
Accurately Measuring Overhead, Communication Time and Progression of

Blocking and Nonblocking Collective Operations at Massive Scale

Torsten Hoefler, Timo Schneider and Andrew Lumsdaine

Open Systems Laboratory, Indiana University

501 N. Morton Street, Bloomington, IN 47404 USA

{htor,timoschn,lums}@cs.indiana.edu

Abstract

Accurate, reproducible and comparable measurement of

the overheads, communication times and progression be-

havior of blocking and nonblocking collective operations

is a complicated task. Although Different measurement

schemes for blocking collective operations are implemented

in well-known benchmarks, many of these schemes intro-

duce different systematic errors in their measurements. We

characterize these errors and select a window-based ap-

proach as the most accurate method. However, this ap-

proach complicates measurements significantly and intro-

duces clock synchronization as a new source of errors.

We analyze approaches to avoid or correct those errors

and develop a scalable synchronization scheme to conduct

benchmarks on massively parallel systems. Our results are

compared to the window-based scheme implemented in the

SKaMPI benchmarks and show a reduction of the synchro-

nization overhead by a factor of 16 on 128 processes. We

also describe two different measurement schemes for the

overhead and asynchronous progress of nonblocking col-

lective communications. An implementation and results of

both measurement schemes are presented.

Keywords: benchmarking, collective operations,

MPI, time synchronization, scalable synchronization

1 Introduction

Collective operations, i.e., operations that are defined

on a group of processes rather than a single process, are

an important part of parallel scientific computing. Their

advantages comprise the separation of communication and

computation which enables machine specific communica-

tion optimization, performance portability among different

parallel machines, better programmability and the reduction

of implementation errors. All those benefits have been rec-

ognized by the scientific community and collective opera-

tions play an important role in many parallel applications

(cf. [23]). Thus, the performance, i.e., latency, of the col-

lective operations is crucial for the performance and running

time of numerous applications.

A new class of collective operation, nonblocking col-

lective operations [11], begins to gain importance. Those

operations change the parameters slightly. While low la-

tency is the most important feature of blocking collective

operations, programs using nonblocking collectives effi-

ciently can often deal with higher latencies if there is suf-

ficient computation that can be performed in parallel. To

utilize the parallel execution of collective communication

and computation, the communication has to proceed in-

dependently from the main CPU (asynchronous). This is

achieved by decoupling the communication in the network

from the computation on the host. New optimization crite-

ria for nonblocking collective operations are low CPU over-

head and high asynchronous progress [10]. We also discuss

benchmarking schemes to assess overhead and independent

progress of nonblocking collective operations.

The complex interaction between communication and

computation in real-world applications requires models to

understand and optimize parallel codes. Serial computa-

tion models, such as Modeling Assertions [2], have to be

combined with network models such as the LogP [4]. Un-

fortunately, today’s systems are too complex to be described

entirely by an execution or communication model. It is nec-

essary to assess the model parameters for every real-world

system, in the serial execution case in [2] as well as in the

communication case in [5, 8, 14]. Pjesivac-Grbovic et al.

showed in [22] that the latency of collective operations that

are implemented on top of point-to-point messages can be

modeled with the LogP model family and we showed in an

earlier work [7] that it is also possible to predict application

performance by modeling the communication and computa-

MPI Gather(...); /∗ warmup ∗/

MPI Barrier(...); /∗ synchronization ∗/

t0 = MPI Wtime(); /∗ take time ∗/

for (i=0; i<reps; i++) {
MPI Gather(...); /∗ execute benchmark ∗/

}
t1 = MPI Wtime(); /∗ take time ∗/

MPI Barrier(...);

time = t1−t0;

Listing 1. MPPTEST Benchmark Scheme

tion separately. Thus, it is crucial to the modeling of parallel

applications to have accurate models for the latency of col-

lective operations. Several benchmarking studies have been

done for different systems [3, 21, 24].

In this paper, we discuss and analyze different estab-

lished measurement methods for collective operations on

parallel computing systems and point out common system-

atic errors. Our measurement method is derived from the

SKaMPI benchmarks [27] and is universal and not lim-

ited to point-to-point based methods or specific algorithms.

We also extend the benchmarking principles to capture the

new parameters, host overhead and asynchronous progres-

sion, for nonblocking collective operations. The following

section discusses established benchmark methods and their

problems.

1.1 Related Work

Different benchmark schemes for blocking collectives

have been proposed. Currently known methods can be di-

vided into three groups. The first group synchronizes the

processes explicitly with the use of synchronization rou-

tines (i.e., MPI Barrier). The second scheme, presented in

[27], establishes the notion of a global time and the pro-

cesses start the operation synchronously. The third scheme

assesses the quality of a collective implementation by com-

parison to point-to-point operations [25] and is thus limited

to algorithms using point-to-point messages. We investigate

several publicly available benchmarks in the following and

characterize them in the three groups.

MPPTEST implements the discussions on reproducible

MPI performance measurements [6]. As described in the

article, the operation to measure is executed in a warm-up

round before the actual benchmark is run. The processes are

synchronized with a single MPI Barrier operation before

the operation is run N times in a loop. A pseudo-code is

shown in Listing 1. Only the time measurements at rank 0

are reported to the user.

TIMER START; /∗ take time ∗/

for (i=0; i<cnt; i++) {
if (...) flushall(1); /∗ invalidate cache if desired ∗/

MPI Alltoall(...); /∗ perform benchmark ∗/

}
TIMER STOP; /∗ take time ∗/

total = TIMER ELAPSED;

total −= calibrate cache flush(cnt); /∗ subtract

cache clearing time ∗/

Listing 2. MPBench Benchmark Scheme

for(i=0; i<numbarr; i++) MPI Barrier(...);

t0 = MPI Wtime(); /∗ take time ∗/

for (i=0; i<reps; i++) {
MPI Alltoall(...); /∗ execute benchmark ∗/

}
t1 = MPI Wtime(); /∗ take time ∗/

time = (t1−t0)/reps;

Listing 3. Intel MPI Benchmark Scheme

MPBench was developed by Mucci et al. [18]. MPBench

does not synchronize at all before the benchmarks. Rank 0

takes the start time, runs N times the collective operation

to benchmark and takes the end time. A pseudo-code is

shown in Listing 2. The timer can use the RDTSC CPU

instruction [15] or gettimeofday(). Time measurement is

only performed and printed on rank 0.

Intel MPI Benchmarks (formerly Pallas MPI bench-

marks [20]), measure a wide variety of MPI calls includ-

ing many collective functions. The code issues a definable

number of MPI Barrier operations before every benchmark

and measures the collective operation in a loop afterwards.

The time needed to execute the loop is taken as a measure-

ment point. The scheme is shown in Listing 3. The bench-

mark prints minimum, maximum and average time over all

processes.

SKaMPI The SKaMPI benchmark uses a time-window

based approach, described in [27], that ensures that all pro-

cesses start the operation at the same time. No explicit syn-

chronization is used and the times are either reported per

process or cumulative.

1.2 Systematic Errors in Common Mea-
surement Methods

Benchmarking collective operations is a controversial

field. It is impossible to find a single correct scheme to mea-

sure collective operations because the variety of real-world

applications is tremendously high. Thus, every possible

benchmark scheme may have its justification. However, mi-

crobenchmarks are often used to compare implementations

and to model the influence of the communication to several

different applications. This is why a benchmark should rep-

resents the average or at least the majority of applications.

Our model application for this work is a well balanced ap-

plication that issues at least two different collective opera-

tions in a computational loop (cf. [23]). This model applica-

tion would benefit from well balanced collective operations

that do not introduce process skew. The following para-

graphs describe common systematic errors done in the mea-

surement of collective operations. This section is concluded

with the selection of a benchmark method. All discussions

apply in the same way to nonblocking collective operations

because the problem of distributed time measurement and

synchronization is identical in the blocking and nonblock-

ing case.

Implementation Assumptions The implementation of

collective communication operations can usually not be pre-

scribed to provide as much optimization space as possi-

ble. Thus, any point-to-point algorithm or hardware sup-

ported operation that offers the functionality defined in

the interface is a valid implementation. Some research

groups used elaborate techniques (e.g., hardware optimiza-

tion and/or specialized algorithms) to optimize collective

communication on different systems (cf. [13, 26, 28]). A

portable benchmark to measure the collective interface can

not make any assumptions about the internal implementa-

tion like [25].

Results on multiple processes A second problem is that

benchmarks are usually providing a single number to the

user, while all processes benchmark their own execution

time. Some benchmarks just return the time measured at

a single process (e.g., the rank 0), some use the average of

all times and some the maximum time of all processes. The

decision which time to use for the evaluation is not trivial.

Sometimes, it is even desirable to include the times of all

ranks in the evaluation of the implementation. Worsch et al.

define three schemes to reduce the times to a single number,

(1) the time needed at a designated process, (2) maximum

time on all processes and (3) the time between the start of

the first process and the finish of the last. This list can be

extended further, e.g., (4) the average time of all processes

or (5) the minimum time might play a role and is returned

by certain benchmarks.

A simplified LogP model derived from [4] is used to

model the network transmissions and effects in collective

communication. The LogP model uses four parameters to

describe a parallel system. The parameter L models the net-

work latency and g is the time that has to be waited be-

tween two packets. The CPU overhead o does not influence

the network transmission and is thus omitted in our sim-

plified model. The number of participating processes P is

constantly four in our examples.

Pipelined Measurements Another source for systematic

errors are pipelining effects that occur when many opera-

tions are executed in a row. A common scheme is to exe-

cute N operations in a loop, measure the time and divide

this time by N . This scheme was introduced to avoid the

relative high inaccuracy of timers when short intervals are

measured. We show in Section 2 that this is not neces-

sary for high precision timers. An example LogP model-

ing for MPI Bcast with root 0, implemented with a linear

scheme, is shown in Figure 1. A single execution is much

Overhead

Message

1 2 30

three measurements

L L

8g 6g+L 7g+L 8g+L

1 2 30

2g L L+g L+2g

single measurement

g

g

g

g

g

g

g

g

g

g
�
�
�

�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 1. Pipeline Effects for a linear Broad-
cast Implementation

more likely to model the behavior of real optimized applica-

tions. Both schemes result in different execution times, e.g.,

the worst-case (maximum among all processes) returned la-

tency for a single execution is L + 2g for a single opera-

tion and (8g + L)/3 for three successive operations. The

pipelined measurement tends to underestimate the latency

in this example.

Process Skew The LogP models in the previous para-

graph assumed that the first operation started at exactly the

same (global) time. This is hardly possible in real parallel

systems. The processes arrive at the benchmark in random

order and at undefined times. Process skew is influenced by

operating system noise [1, 16] or other collective operations

(cf. Figure 1 where rank 0 leaves the operation after 2g and

rank 3 finishes only after L+ 2g). A LogP example for the

influence of process skew is shown in Figure 2. The left

�
�
�
�
�
�
�

�
�
�
�
�
�
�

1 2 30

root is late

1 2 30

2g 0 0 <L+2g

random skew

g

g

g

g

2g >L >L+g >L+2g

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

Figure 2. Influence of Process Skew on a

Broadcast Benchmark

side shows a random skew pattern where rank 1 and 2 ar-

rive relatively late and do not have to wait for their message

while the right side shows a situation where the root (rank 0

in this example) arrives late and all ranks have to wait much

longer than usual. Process skew can not be avoided and

is usually introduced during the runtime of the parallel pro-

gram. This effect is well known and several benchmarks use

an MPI Barrier before the measurement to correct skew.

Synchronization Perturbation and Congestion The

MPI Barrier operation has two problems, the first one is

that this operation may be implemented with any algorithm

because it only guarantees that all processes arrived before

the first returns from the call. There is no guarantee that the

processes leave at the same time (i.e., the barrier operation

may introduce process skew). The second one is that it may

use the same network as other collective operations which

may influence the messages of the investigated collective

operation. An example with a linear barrier implementation

is shown in Figure 3.

Network Congestion Network congestion can occur if

multiple operations are started successively or synchroniza-

tion messages interfere with the measurement. This influ-

ences the measured latencies.

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��

��
��
��

0 1 2 3

barrier
message

g

g

g

3g 3g+L3g+L 3g+L

bcast
message

overhead
bcastg

g

g

g

Figure 3. Possible Effect of Barrier Synchro-
nization on Measurements

1.3 Selecting a Benchmark Scheme

The SKaMPI benchmarks avoid most of the system-

atic errors with the window-based mechanism [27]. This

mechanism relies heavily on the assumption, that the dif-

ference between the local clocks does not change (drift) or

changes in a predictable way (can be corrected). We analyze

the clock drift in the following sections. Another problem

might be the variation in the latency of point-to-point mes-

sages. This variation is also analyzed and a new accurate

point-to-point synchronization scheme is presented. Fur-

thermore, we propose and implement a new scalable group

synchronization algorithm which scales logarithmically in-

stead of the linear SKaMPI approach.

2 Measurements in Parallel Systems

Several restrictions apply to measurements in parallel

systems. One of the biggest problems is the missing time

synchronization. Especially in cluster systems, where ev-

ery node is a complete and independent system with its

own local time source, one has to assume that potentially

all processes of a parallel job run at slightly different clock

speeds. However, to perform the necessary measurements,

we need to synchronize all clocks or have at least the time

offsets of all processes to a global time. It can also not be

assumed that the processes start in any synchronous state.

To ensure portability, MPI mechanisms have to be used to

synchronize. However, collective operations semantics do

not guarantee any timing, thus, we need to synchronize the

processes with point-to-point operations. Those operations

do not guarantee timing either but are less complex than

collective operations (no communication patterns). We an-

alyze local time sources and their accuracy in the following.

This is followed by an analysis of the clock skew in parallel

systems and the distribution of latencies. This analysis is

used to derive a novel and precise synchronization scheme

in the next section.

2.1 Local Time Measurement

All time sources in computing systems work in a sim-

ilar way: They use a crystal that oscillates with a fixed

frequency and a register that counts the number of oscil-

lations since a certain point in time (for example the system

startup). However, the way to access this information can

be different. Some timing devices can be configured to is-

sue an interrupt when the register reaches a certain value or

overflows and others just enable the programmer to read the

register.

A very important timer in a modern PC is the Real Time

Clock (RTC) which is powered by a battery or capacitor so

that it continues to tick even when the PC is turned off. It

is used to get the initial time of the day at system startup,

but since it is often very inaccurate (it is optimized for low

power consumption, not for accuracy), it should not be used

to measure short time differences.

Another time-source is the Programmable Interval Timer

(PIT). It can be configured to issue interrupts at a certain fre-

quency. These interrupts are used to update the system time

and perform several operating system functions. When us-

ing the system time (for example via gettimeofday())

one must be aware that the returned value might be influ-

enced by ntp or other time-synchronization mechanisms

and that there is a whole software stack behind this simple

system call which might add additional perturbation (i.e.,

interrupts, scheduling, etc.).

The resolution of the discussed time sources is not very

high and not accurate enough for the benchmarking of

fast events like single message transmissions. Thus, many

instruction set architectures (ISA) offer calls to read the

CPU’s clock register which is usually incremented at ev-

ery tick. For example the x86 and x86-64 ISAs offer the

atomic instruction RDTSC call [15] to read a 64 bit CPU

tick register. In fact most modern ISAs support similar

features. The resolution of those timers is usually very

high (e.g., 0.5ns on a 2GHz system). It has to be noted

that this mechanism introduces several problems on modern

CPUs. The first issue is caused by techniques that dynami-

cally change the CPU frequency (e.g., to save energy) such

as “Intel-SpeedStep” or “AMD-PowerNow”. Changing the

CPU clock results in invalid time measurements. Thus, we

recommend to disable those mechanisms in cluster systems.

A second problem, called “process hopping”, may occur on

multi-processor systems where the process is re-scheduled

between multiple CPUs. The counters on the CPUs are not

necessarily identical. This might also influence the mea-

surement. This problem is also minor because most modern

operating systems (e.g., Linux 2.6) offer interfaces to bind

a process to a specific CPU (e.g., CPU affinity), and in fact,

most operating systems avoid “process hopping” by default.

2.2 Clock Skew and Network Latencies

The crystals used for hardware timers are not ideal with

respect to their frequency. They may be a little bit slower or

faster than their nominal rate. This drift is also temperature

dependent and has been analyzed in [17] and [19]. It was

shown that this effect is significant enough to distinguish /

identify single computers and sometimes even the timezone

which they are located in. Due to other effects, such as

the NTP daemon that synchronizes every 11 minutes (local

time!) by default, the clock difference between two nodes

may behave very unpredictable. Therefore the usage of a

software independent clock like the TSC is generally a vi-

able alternative. Of course those effects could have a nega-

tive influence on collective benchmarks which rely on time

synchronization, especially if the synchronization is done

only once before a long series of benchmarks. In our exper-

iments it turns out that two clocks (even on identical hard-

ware) always run at slightly different speeds. Therefore we

analyzed the clock skew between various nodes in a cluster

system over a longer period of time.

Similar to the clocks, that do not run totally syn-

chronously, we do also expect a variance in the network

transmission parameters for different messages. The most

important parameter for benchmarks and synchronization is

the network latency (or round-trip-time (RTT) in ping-pong

benchmarks). Thus, we have to analyze the variance of RTT

for different networks.

We used a simple ping pong scheme to determine the

RTT: Rank 1 sends its local time t1 as an eight byte mes-

sage with a blocking send to rank 2. As soon as rank 2 has

completed the corresponding recv, it sends its local time t2
back to rank 1. After rank 1 is finished receiving that times-

tamp it checks his local time t3. To use a portable high-

precision timing interface and to support many network in-

terconnects, the benchmark scheme was implemented in the

Netgauge performance measurement framework [12]. A

pseudo-code is shown in Listing 4. The difference between

the first and the second timestamp obtained by node 1 is

the roundtrip time (trtt ← t3 − t1). On our x86 systems,

we used RDTSC in the take time() macro because this

gives us a very high resolution and accuracy. However, we

if (rank == 0) {
t1 = take time();

module→ send(1, &t1, 8);

module→ recv(1, &t2, 8);

t3 = take time();

} else {
module→ recv(0, &t1, 8);

t2 = take time();

module→ send(0, &t2, 8);

}

Listing 4. The RTT Benchmark

double-checked our findings with MPI Wtime (Which uses

gettimeofday() or similar functions) to avoid common

pitfalls described in Section 2.1.

This measurement was repeated 50,000 times, once ev-

ery second over a period of 14 hours. We gather data to get

information about the RTT distribution and also the clock

skew between two nodes. Thus, we define the difference

between t1 and t2 as clock-difference (tdiff ← |t1 − t2|)
and collect statistical data for the clock differences too.

The benchmark results, a histogram of 50,000 RTT mea-

surements in 200 uniform bins, for the latency (RTT/2) dis-

tributions of InfiniBand, Myrinet and Gigabit Ethernet are

shown in Figure 4.

 0

 100

 200

 300

 400

 500

 600

 700

 5 10 15 20 25 30 35 40
 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 50 100 150 200 250 300

F
re

q
u
e
n
c
y
 (

IB
,G

M
)

F
re

q
u
e
n
c
y
 (

G
ig

E
)

Latency in usecs (IB,GM)

Latency in usecs (GigE)

InfiniBand (IB)
Myrinet (GM)

Ethernet (GigE)

Figure 4. Distribution of Roundtrip Times

The clock skew results of 6 different node pairs on our

test systems are shown in Figure 5. We see that the clock

difference behaves relatively linear at a coarse scale.

3 Time Synchronization

We describe a new time synchronization scheme that

bases on our analysis of clock skew and latency variation.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 2 4 6 8 10 12 14

C
lo

c
k
 d

if
fe

re
n
c
e
 i
n
 s

e
c

Time after start of measurement in h

pair 1
pair 2
pair 3
pair 4
pair 5
pair 6

Figure 5. Clock Drift for Different Pairs

We begin by defining a scheme to synchronize two pro-

cesses and derive a scalable scheme to synchronize large

process groups. We used this schemes to synchronize the

processes in our collective benchmark NBCBench [11] that

uses a window-based benchmark scheme.

3.1 Synchronizing two Processes

A clock synchronization between two peers is often ac-

complished with a ping pong scheme similar to the one de-

scribed above: Two processes calculate their clock differ-

ence so that the client node knows his clock offset relative

to the server node. This offset can be subtracted from the

client’s local time when clock synchronization is required.

However this procedure has certain pitfalls one has to be

aware of.

Many implementations of the scheme described above,

for example the one found in the SKaMPI code, use

MPI Wtime to acquire timestamps. This is of course the

most portable solution and works for homogeneous nodes

as well as heterogeneous ones. But you can not be sure

which timing source is used by MPI Wtime, for example

the usage of gettimeofday() is, due to its portability,

quite likely. But the precision of this clock can vary (cf. Sec-

tion 2.1).

We showed in Section 2 that measured network latencies

are varying with an unpredictable distribution. The effect

of this pseudo-random variation of the latency to the clock

synchronization has to be minimized. Many codes use the

average or median of the clock differences and roundtrip

times. This is not a viable option because their distribution

is asymmetric and their variance is high. A better approach

is the measurement of roundtrip time and clock difference at

the same time and only use the clock differences obtained in

measurements with round trip times below a certain thresh-

old.

The distribution of roundtrip times can not be known in

advance. That implies that this threshold can not be selected

easily. We chose a different approach to ensure accurate

measurements. For the measurements in Section 2, we used

only the 25% of the results that had the smallest roundtrip

time. However, this requires a fixed number of measure-

ments to be conducted every time and makes this scheme

unusable for online measurements. For this purpose, we

developed another approach. We conduct as many measure-

ments as we needed so that the minimal observed roundtrip

time does not become smaller for N consecutive measure-

ments.

While this scheme is guaranteed to converge, it is not

possible to predict how many measurements have to be con-

ducted for a certain N . It is also not possible to select N
such that it ensures a certain quality of the observed min-

imal roundtrip time. Thus, we performed a simulation to

find suitable values for N for different interconnection net-

works.

The simulation takes a random roundtrip time from our

list1 and checks if it was bigger than the smallest one ob-

served in this run. If this condition is met N consecutive

times the run is completed and we compute the difference

(in percent) between the smallest RTT in our whole dataset

and the one observed in the current run. The average dif-

ference is shown in the “quality” graphs in Figure 6. In the

same figure we graphed how many iterations of this simula-

tion (which is equal to the number of measurements needed

in the online scenario) were needed until the selected mini-

mum was the smallest for N iterations. This is graphed as

“cost”. Since this graph looked very similar for all tested

networks we only plotted it once.

It shows that the quality of the measurement and the

measurement costs (i.e., the number of measurements) in-

crease relatively independent of the network with N . How-

ever, the quality of the results improves fast for small N and

seems to saturate around 5%. To support every network, we

chose N = 100, which has an error of less than 10% for

our tested networks and costs approximately 180 measure-

ments.

3.2 Scalable Group Time Synchronization

Collective time synchronization means that all processes

know the time difference to a single process so that every

process can compute a global time locally. Rank 0 is con-

veniently chosen as global time source, i.e., after the time

synchronization, every rank knows the difference between

its own clock and rank 0’s clock. This enables globally syn-

chronous events initiated by rank 0. For example, rank 0 can

broadcast a message that some function is to be executed at

1we used the 50,000 RTTs gathered as described in Section 2

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 10 100 1000
 1

 10

 100

 1000

d
if
fe

re
n
c
e
 t
o
 o

p
ti
m

a
l
ro

u
n
d
tr

ip
 i
n
 %

n
u
m

b
e
r

o
f
m

e
a
s
u
re

m
e
n
ts

N

cost (GigE/GM/IB)
quality (GigE)

quality (IB)
quality (GM)

Figure 6. Influence of N on Quality

rank 0’s local time x. Every rank can now calculate its local

time when this operation has to be executed.

A common scheme to synchronize all ranks is start the

point-to-point synchronization procedure between rank 0

and every other rank. The disadvantage of this scheme is

that it takes P − 1 synchronization steps to synchronize P
processes (each process sends and receives multiple mes-

sages in each step). We propose a new and scalable time

synchronization algorithm for our scalable benchmark. Our

algorithm uses ⌈log2P ⌉ communication steps to synchro-

nize P processes.

The algorithm divides all ranks into two groups. The

first group consists of the maximum power-of-two ranks,

t = 2k;max(k ∈ N), t ≤ P beginning from rank 0 to rank

t − 1. The second group includes the remaining ranks t to

P − 1.

The algorithm works in two steps, the first group syn-

chronizes with a tree-based scheme in log2t synchroniza-

tion rounds. The point-to-point scheme, described in Sec-

tion 3.1 is used to synchronize two processes. Every rank r
in round r acts as a client if r mod 2r = 0 and as a server

if r mod 2r = 2(r−1). All clients r use rank r + 2(r−1) as

server and all servers rank r − 2(r−1) as client. All client-

server groups do the point-to-point synchronization scheme

in parallel. Every server gathers some time difference data

in every round. This gathered data has to be communicated

at the end of every round. To be precise, a server communi-

cates 2(r−1) time differences to its client at the end of every

round. The clients receive the data and update their local

differences to pass them on in the next step. After log2t
rounds, rank 0 knows the time differences to all processes

in group 1.

In the second step, all processes in group 2 choose peer

r− t in group 1 to synchronize with. All processes in group

2 synchronize in a single step with their peers and send the

result to rank 0 which in turn calculates all the time offsets

for all processes and scatters them accordingly. After this

step, all processes are time synchronized, i.e., know their

time difference to the global clock of rank 0. The whole

algorithm for an example with P = 7 is shown in Figure 7.

T
2,3

T
0,1

T
0,2

T
4,0

T
5,1

T
6,2

T
2,3

T
6,2T

4,0
T

5,1

S
t
e
p

1

S
t
e
p

2

1 2 30 4 5

group 1 group 2

6

Figure 7. Synchronization Method

Figure 8 shows the difference in synchronization time

between a linear scheme and the proposed logarithmic al-

gorithm. The benchmark, which measures the synchroniza-

tion time at rank 0, was run on the Odin cluster at Indiana

University, the cluster consists of 128 dual Opteron dual-

core nodes. To simulate a real application, we used all four

cores of the machine. The synchronization time is greatly

reduced (up to a factor of more than 16 for 128 processes)

with the new scheme.

4 Designing the Microbenchmark

We used our new findings to implement a new bench-

mark scheme in the benchmark suite Netgauge. The imple-

mentation bases on NBCBench which was first introduced

to measure the performance and overlap characteristics of

nonblocking collective operations in [11]. However, the

first part of this paper focuses on measurement methods

for blocking collective operations which is also supported

by Netgauge. This section gives a rough overview about

the necessary parts of Netgauge to understand how the pro-

posed measurement method is implemented. In our method,

we use the hints of [6] and omit the implementation details

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 20 40 60 80 100 120 140

S
y
n
c
h
ro

n
iz

a
ti
o
n
 T

im
e
 (

s
)

Communicator Size

traditional
optimized

Figure 8. Synchronization Time over IB

for(p=2;p<numprocs;p=p∗2) {
MPI Comm create(...); /∗ create sub−communicator ∗/

sync init stage1(...);

for(s=1;s<size,s=s∗2) {
for(i=1;i<warm;i++) MPI Allreduce(...); /∗ warmup ∗/

sync init stage2(...);

for(b=0;b<numbench;b++) {
sync(...);

t = −take time();

MPI Allreduce(...);

t += take time();

} } }

Listing 5. Netgauge Collective Benchmark

Scheme for Allreduce

due to space restrictions. We implement a SKaMPI-like

window-based mechanism with the synchronization tech-

niques described above. We introduced an abstract syn-

chronization interface that calls three different functions.

Netgauge mainly consists of three nested loops, the outer

loop runs over different process numbers, the second loop

runs over different data sizes and the inner loop performs

multiple time measurements. The first call to a synchro-

nization function (sync init stage1()) is done in the

outer loop and determines the time offsets to rank 0. The

second call (sync init stage2()) is inside the loop

over all data sizes, and checks and changes the window size

if necessary (cf. [27]). The inner loop calls sync() before

every benchmark which waits until the next window starts.

The scheme is shown in Figure 9 and a pseudo-code is pre-

sented in Listing 5. The output can be customized by the

user. Netgauge is able to print the times for all processes or

the median, average, minimum or maximum time of all pro-

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

��
��
��
��

��
��
��

��
��
��

rank 0 rank 1 rank 2 rank 3 rank 4 rank 5

Broadcast t_start and window

sync_init_stage1():

compute clock offset

for each rank.

sync_init_stage2():

rank 0 broadcasts

t_start and window

sync():
(wait until t_start + offset)

record tb_start

perform collective

record tb_end

sync():
record tb_start

perform collective

record tb_end

Window 1 Starts

...

Gather results

Window n Starts

Window 2 Starts

Figure 9. Benchmarking blocking collectives

cesses. It is also possible to select between the minimum,

maximum, average or median time for all measurements.

4.1 Nonblocking Collective Operations

The previous sections discussed distributed synchroniza-

tion and measurement principles for collective operations.

In the case of blocking collective operations, the results can

be directly reported to the user or used in communication

models. However, measuring nonblocking collective com-

munication is more complicated. A nonblocking commu-

nication consists of two phases, the initialization and the

wait phase. Initialization is usually the time when the oper-

ation is posted, for example a call to NBC Ibcast to start

a nonblocking broadcast. The corresponding NBC Wait

waits for the completion of the operation. Ideally, there

is enough computation between the initialization and wait

and the communication progresses independently. This ef-

fectively turns NBC Wait into a no-op (the communication

is already finished before wait is called). Thus, the only

overheads that the user-code faces is the time needed by

NBC Ibcast and the time spent in NBC Wait. Thus, the

communication-latency can be ignored as long as there is

enough computation to overlap and the communication pro-

gresses independently.

Progression can either be independent from the user

(e.g., in the threaded case [9]) or has to be performed man-

ually (e.g., by calling NBC Test frequently [10]). Thus, we

conclude that the two important parameters are CPU over-

head and asynchronous progression.

In order to assess all overheads, we propose a two-stage

scheme to benchmark nonblocking collective operations.

The first stage benchmarks the time Tb for the blocking

execution of non-blocking collective operations (initializa-

tion followed by a wait). The second stage initializes the

nonblocking communication simultaneously on every rank,

computes for time tb and then waits for completion. Option-

ally, progression calls can be done during the computation

phase. The benchmark schema is shown in Figure 10 and

Listing 6.

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���� ����������

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��

��
��
��
��
���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

compute
workload

compute
workload

compute
workload

rank 0 rank 1 rank 2

NBC_Iallreduce

NBC_Test

NBC_Test

NBC_Wait

...
gather results

sync(): (see Fig. 9)

sync(): (see Fig. 9)

Figure 10. Black-box test for manual progres-

sion strategy

The computation loop might contain calls to NBC Test

in order to progress the outstanding communication re-

quests. This time-based scheme is able to assess all over-

heads related to calls on the CPU. However, it fails to cap-

ture other overheads for example interrupt times or schedul-

ing overheads because it’s time-based. In order to assess all

additional overheads one can employ a work-based scheme,

such as:

1. benchmark the time tb for a blocking communication

with scheme described before

for(p=2;p<numprocs;p=p∗2) {
MPI Comm create(...); /∗ create sub−communicator ∗/

sync init stage1(...);

for(s=1;s<size,s=s∗2) {
for(i=1;i<warm;i++) /∗ warmup ∗/

NBC Iallreduce(..., &req); NBC Wait(req);

t b −= take time()

NBC Iallreduce(..., &req); NBC Wait(req);

t b += take time()

t b = max t b of all processes

sync init stage2(...);

for(b=0;b<numbench;b++) {
sync(...);

t init −= take time();

NBC Iallreduce(..., &req);

t init += take time();

do compute(t b);

t wait −= take time();

NBC Wait(req);

t wait += take time();

} } }

Listing 6. Netgauge Benchmark Scheme for

Iallreduce

2. find workload λ that needs tb to be computed

(a) λ = 0
(b) while(tλ < tb) { increase workload λ by δ;

tλ = time to compute workload λ }
3. collect maximum time workload λ of all processes

4. start timers tov simultaneously on all processes

5. start communication (also simultaneously, e.g.,

NBC Ibcast)

6. compute fixed workload λ
7. wait for communication (NBC Wait)

8. stop timer tov

Both, the time-based and the workload-based methods,

are useful to determine and compare different sources of

overhead. Thus, we implemented both methods in Net-

gauge. Figure 11 shows the benchmark result for the block-

ing and nonblocking collective NBC Iallreduce operations

on 32 InfiniBand nodes. The nonblocking operations are

either implemented with user-progression (“nb/time/test”

with tests for every 1024 bytes, which was the optimal re-

sult for the test-interval determined before) or with an asyn-

chronous progress thread running on a separate core. Both,

the time- and the work-based benchmarking scheme deliv-

ered similar results for the test-based progression. How-

ever, there were clear differences in the threaded progres-

sion case because the time-based scheme hides overheads

such as context switching. We see that threaded progres-

sion seems only useful when more then 512 kiB are re-

duced. We also see the eager/rendezvous switching point

at 128 bytes and the collective algorithm switching point at

512 kiB. More measurements can easily be collected with

LibNBC and Netgauge.

 10

 100

 1000

 10000

 10 100 1000 10000 100000 1e+06

O
v
e
rh

e
a
d
 (

u
s
e
c
)

Message Size (bytes)

blocking
nb/time/test

nb/time/thread
nb/work/thread

Figure 11. Blocking and nonblocking over-

head for NBC Iallreduce on 32 InfiniBand
nodes

4.2 Asynchronous Progress

We presented techniques to benchmark the overhead of

nonblocking collective operations. However, assessment of

asynchronous progression is still undefined. In this section,

we propose an indirect method to measure asynchronous

progress by comparing different test strategies. The num-

ber of necessary progression calls can also be assessed with

Netgauge. We proposed a black box testing scheme in [10]

that performs N tests during a message transmission. N is

defined as a function of the message size in order to reflect

the needs of the pipelined protocol:

N =

⌊

size

interval

⌋

+ 1

For example, if the datasize is 4096 bytes and the interval

is 2048 bytes, the benchmark issues one test at the begin-

ning, one after 50% of the computation and one at the end.

The test-interval for Netgauge can be chosen by the user.

The scheme is shown in Figure 10. Note that every process

which takes part in the benchmark has to record the over-

head caused by progression calls. Of course it has to be

assured that the workload is long enough to hide the entire

communication, as described earlier.

5 Conclusions

In this work, we analyzed different schemes to bench-

mark the latency, overhead and independent progress of

blocking and nonblocking collective operations. We de-

fined certain systematic errors in common methods and pro-

posed a new and scalable scheme which avoids those errors.

Our method bases on a window-based measuring method.

Therefore, we propose and analyze a new scalable group

synchronization method for collective benchmarks. Our

method is more than 16 times faster than other established

schemes on 128 processes and promises to be more accu-

rate. The described scheme to benchmark overhead, com-

munication time and progression of blocking and nonblock-

ing collective operations has been implemented in the open

source tool NBCBench which is available at the author’s

webpage.

Acknowledgments

This research was funded by a gift from the Silicon Val-

ley Community Foundation, on behalf of the Cisco Collab-

orative Research Initiative of Cisco Systems.

References

[1] S. Agarwal, R. Garg, and N. Vishnoi. The impact of noise

on the scaling of collectives: A theoretical approach. In

12th Annual IEEE International Conference on High Per-

formance Computing, Goa, India, Dec. 2005.

[2] S. R. Alam, N. Bhatia, and J. S. Vetter. An exploration

of performance attributes for symbolic modeling of emerg-

ing processing devices. In R. H. Perrott, B. M. Chapman,

J. Subhlok, R. F. de Mello, and L. T. Yang, editors, HPCC,

volume 4782 of Lecture Notes in Computer Science, pages

683–694. Springer, 2007.

[3] T. Bönisch, M. M. Resch, and H. Berger. Benchmark eval-

uation of the message-passing overhead on modern parallel

architectures. In Parallel Computing: Fundamentals, Appli-

cations and New Directions, Proceedings of the Conference

ParCo97, pages 411–418, 1997.

[4] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser,

E. Santos, R. Subramonian, and T. von Eicken. LogP: to-

wards a realistic model of parallel computation. In Princi-

ples Practice of Parallel Programming, pages 1–12, 1993.

[5] D. Culler, L. T. Liu, R. P. Martin, and C. Yoshikawa. LogP

Performance Assessment of Fast Network Interfaces. IEEE

Micro, 16:35–43, February 1996.

[6] W. Gropp and E. L. Lusk. Reproducible measurements of

mpi performance characteristics. In Proceedings of the 6th

European PVM/MPI Users’ Group Meeting on Recent Ad-

vances in Parallel Virtual Machine and Message Passing In-

terface, pages 11–18, London, UK, 1999. Springer-Verlag.

[7] T. Hoefler, R. Janisch, and W. Rehm. Parallel scaling of

Teter’s minimization for Ab Initio calculations. 11 2006.

Presented at the workshop HPC Nano in conjunction with

SC’06.

[8] T. Hoefler, A. Lichei, and W. Rehm. Low-Overhead LogGP

Parameter Assessment for Modern Interconnection Net-

works. 03 2007.

[9] T. Hoefler and A. Lumsdaine. Message Progression in Paral-

lel Computing - To Thread or not to Thread? In Proceedings

of the 2008 IEEE International Conference on Cluster Com-

puting. IEEE Computer Society, Oct. 2008.

[10] T. Hoefler and A. Lumsdaine. Optimizing non-blocking Col-

lective Operations for InfiniBand. In Proceedings of the

22nd IEEE International Parallel and Distributed Process-

ing Symposium (IPDPS), 04 2008.

[11] T. Hoefler, A. Lumsdaine, and W. Rehm. Implementation

and performance analysis of non-blocking collective opera-

tions for mpi. In Accepted for publication in the proceesings

of Supercomputing’07, 2007.

[12] T. Hoefler, T. Mehlan, A. Lumsdaine, and W. Rehm.

Netgauge: A Network Performance Measurement Frame-

work. In High Performance Computing and Communica-

tions, Third International Conference, HPCC 2007, Hous-

ton, USA, September 26-28, 2007, Proceedings, volume

4782, pages 659–671. Springer, 9 2007.

[13] T. Hoefler, T. Mehlan, F. Mietke, and W. Rehm. Fast Barrier

Synchronization for InfiniBand. In Proceedings, 20th In-

ternational Parallel and Distributed Processing Symposium

IPDPS 2006 (CAC 06), April 2006.

[14] T. Hoefler, T. Mehlan, F. Mietke, and W. Rehm. LogfP -

A Model for small Messages in InfiniBand. In Proceedings,

20th International Parallel and Distributed Processing Sym-

posium IPDPS 2006 (PMEO-PDS 06), April 2006.

[15] Intel Corporation. Intel Application Notes - Using the

RDTSC Instruction for Performance Monitoring. Technical

report, Intel, 1997.

[16] K. Iskra, P. Beckman, K. Yoshii, and S. Coghlan. The influ-

ence of operating systems on the performance of collective

operations at extreme scale. In Proceedings of Cluster Com-

puting, 2006 IEEE International Conference, 2006.

[17] T. Kohno, A. Broido, and K. Claffy. Remote physical device

fingerprinting. Dependable and Secure Computing, IEEE

Transactions on, 2(2):93–108, 2005.

[18] P. J. Mucci, K. London, and J. Thurman. The MPIBench Re-

port. Technical report, CEWES/ERDC MSRC/PET, 1998.

[19] S. Murdoch. Hot or not: revealing hidden services by their

clock skew. Proceedings of the 13th ACM conference on

Computer and communications security, pages 27–36, 2006.

[20] Pallas GmbH. Pallas MPI Benchmarks - PMB, Part MPI-1.

Technical report, 2000.

[21] J. Pjesivac-Grbovic. Open MPI Collective Operation Perfor-

mance on Thunderbird. Technical report, The University of

Tennessee, Computer Science Department, Knoxville, Tech-

nical Report, UT-CS-07-594, 2007.

[22] J. Pjesivac-Grbovic, T. Angskun, G. Bosilca, G. E. Fagg,

E. Gabriel, and J. J. Dongarra. Performance Analysis of

MPI Collective Operations. In Proceedings of the 19th In-

ternational Parallel and Distributed Processing Symposium,

Denver, CO, April 2005.

[23] R. Rabenseifner. Automatic MPI Counter Profiling. In 42nd

CUG Conference, 2000.

[24] S. Saini, R. Ciotti, B. T. N. Gunney, T. E. Spelce, A. E.

Koniges, D. Dossa, P. A. Adamidis, R. Rabenseifner, S. R.

Tiyyagura, M. Mller, and R. Fatoohi. Performance evalu-

ation of supercomputers using hpcc and imb benchmarks.

In 20th International Parallel and Distributed Processing

Symposium (IPDPS 2006), Proceedings, 25-29 April 2006,

Rhodes Island, Greece. IEEE, 2006.

[25] M. Shro and R. Geijn. CollMark MPI Collective Communi-

cation Benchmark. Technical report, University of Texas at

Austin, December 1999.

[26] S. S. Vadhiyar, G. E. Fagg, and J. Dongarra. Automatically

tuned collective communications. In Supercomputing ’00:

Proceedings of the 2000 ACM/IEEE conference on Super-

computing (CDROM), page 3, Washington, DC, USA, 2000.

IEEE Computer Society.

[27] T. Worsch, R. Reussner, and W. Augustin. On benchmarking

collective mpi operations. In Proceedings of the 9th Euro-

pean PVM/MPI Users’ Group Meeting on Recent Advances

in Parallel Virtual Machine and Message Passing Interface,

pages 271–279, London, UK, 2002. Springer-Verlag.

[28] W. Yu, D. Buntinas, R. L. Graham, and D. K. Panda. Ef-

ficient and scalable barrier over quadrics and myrinet with

a new nic-based collective message passing protocol. In

18th International Parallel and Distributed Processing Sym-

posium (IPDPS 2004), CD-ROM / Abstracts Proceedings,

26-30 April 2004, Santa Fe, New Mexico, USA, 2004.

