
Adding Low-Cost Hardware Barrier Support to

Small Commodity Clusters

Torsten Hoefler, Torsten Mehlan, Frank Mietke and Wolfgang Rehm

{htor,tome,mief,rehm}@cs.tu-chemnitz.de

17th January 2006

Abstract

The performance of the barrier operation can be crucial for many parallel
codes. Especially distributed shared memory systems have to synchronize
frequently to ensure the proper ordering of memory accesses. The barrier
operation is often performed on top of point-to-point messages and the best
algorithm scales with O(log2P · L) in the LogP model. We propose a cheap
hardware extension which is able to perform the task of synchronization in
nearly constant time and implement a driver inside the Open MPI framework
to speedup the MPI Barrier() call. We test our implementation with the
parallel implementation of Abinit and the MPI overhead decreases by nearly
32%.

1 Introduction

The barrier operation can be important for different applications. Especially DSM
(Distributed Shared Memory) systems perform the barrier operation frequently to
ensure the proper ordering of remote memory accesses. The overall latency of the
barrier essentially consists of two parts, the synchronization time and the process
skew. The process skew results from the synchronizing behavior of the barrier. It
is the time difference between the first and the last process which calls the barrier

1



1 INTRODUCTION 1.1 Related Work

function. This skew occurs due to the application itself (unfavorable load distribu-
tion) or the runtime environment (e.g. operating system deamons running on the
nodes) and is not addressed in this paper. The second time, the synchronization
time can be measured when all nodes reach their barrier at the same time. It is the
time that is needed to communicate the ”barrier reached” state to all other nodes.
Traditional barrier implementations for distributed memory systems use explicit
messages (point-to-point) operations to synchronize among each other. The fastest
algorithm for this purpose is the Dissemination algorithm [7] and its optimality
within the LogP [1] model has been proven in [9]. These theoretical considerations
have been verified with practical measurements in [8] which leads us to the conclu-
sion that the fastest barrier with regards to the synchronization time scales with
O(log2P · L) in the LogP model and also on real world systems. This scaling can
be very time demanding if the barrier operation is frequently used because typical
network latencies L vary from 4µs up to several 100µs. We want to show that a
very easy and cheap additional barrier ”network” can lead to much higher barrier
performance in this context.

The remaining paper is structured as follows. The following subsection summarizes
the related work to optimize barrier performance. Section 2 gives a short overview of
the current proof of concept implementation. Some performance evaluation data for
microbenchmarks as well as an application benchmark is given in section 3, followed
by a conclusive summary and an outlook to future research directions.

1.1 Related Work

Enhancing barrier performance has a long history. Several attempts to optimize the
synchronization on top of point-to-point have been taken and are described in [9].
The Idea to optimize the barrier by leveraging a special barrier network is also not
new in the area of supercomputing. Large systems, as the earth simulator [6] or the
Blue Gene/L [4] incorporate also special hardware support for synchronization. A
similar low-cost approach has been taken at the Purdue University and is described
in [2]. However, our design is much simpler and applicable to each MPI application
without even recompiling it.

Torsten Hoefler Page 2/9



2 DESIGN

2 Design

The design of our hardware barrier is as simple as possible. The current proof of
concept hardware uses the parallel port to connect the PC to a central controlling
logic. This logic has been implemented in a Altera UP1 FPGA (see figure 1). Each

Figure 1: The Altera FPGA

computer uses exactly three cables to connect to the FPGA: in, out and ground. A
schematic parallel port pinout is shown in figure 2. We used pin 14 (CONTROL[1])
for our incoming path and pin 2 (DATA[0]) for our outgoing path. Using this
scheme, we could offer up to 5 parallel barriers at any time (limited by the number
of incoming lines). The central barrier logic just implements a finite state machine

127 6 5 4 3 0

127 6 5 4 3 0

127 6 5 4 3 0
Control Port (BASE + 2)

Status Port (BASE + 1) IRQ enable

17 16 14 1

13

14

11 10 12 13 15

Data Port (BASE + 0)

6 5 3 24789

1

outgoing

incoming

25

Figure 2: Parallel Port Pin-out

with two states, shown in figure 3. This two state machine toggles the outgoing

Torsten Hoefler Page 3/9



2 DESIGN 2.1 Implementation

i1 and i2 and i3 and i4 = ’1’

i1 or i2 or i3 or i4 = ’0’

o = ’1’

o = ’0’

Figure 3: The implemented Finite State Machine

bit, when all incoming bits are set inversely to the current state. This enables us to
use a very simple synchronization scheme which only needs one read and one write
operation to the parallel port to synchronize (in the best case, if all nodes reach their
barrier simultaneously). The scheme which has to be performed for each barrier call
is described in the following:

1. read status (in)

2. toggle status

3. write new status (out)

4. read status (in) until toggled

The first read can be done during the initialization phase and the status can be
stored between the barrier calls. So that the scheme is reduced to toggle - write -
read.

2.1 Implementation

The support for the hardware barrier has been implemented into the Open MPI
[3] framework as described in [10]. We describe the methodology in the following
shortly. The hardware barrier was implemented as a collective module in Open MPI.
The init phase is used to read the initial status of the hardware and to store this
status associated with the communicator. Currently, only MPI COMM WORLD

Torsten Hoefler Page 4/9



3 PERFORMANCE EVALUATION

#include <stdio .h>
#include <unistd .h>
#include <asm/io .h>

5 #define BASEPORT 0x378

int main()
{

/∗ Get access to the ports − only as root ! ∗/
10 i f (ioperm(BASEPORT, 3, 1)) {perror(”ioperm”) ; exit (1);}

/∗ Set the data signals (D0−7) of the port to a l l low (0) ∗/
outb(0 , BASEPORT);

15 /∗ Read from the status port (BASE+1) and print the result ∗/
printf (”status : %d\n” , inb(BASEPORT+ 1));

}

Listing 1: Accessing the Parallel Port in C

is supported by our implementation because we have only two wires and the mod-
ule simply refuses to run for all other communicators (the framework falls back to
another barrier implementation in this case). The barrier call itself is performed
with the toggle - write - read schema described above. Another limitation of our
current proof of concept design is that the process has to run with root privileges
to communicate with the hardware barrier with inb and outb (this could be avoided
with a simple kernel patch).

A small code example which shows how the communication with the barrier hard-
ware is implemented is shown in listing 1

3 Performance Evaluation

The performance of the hardware barrier can be modeled with the following param-
eters:

• ow CPU overhead to write to the parallel port

Torsten Hoefler Page 5/9



3 PERFORMANCE EVALUATION 3.1 Parameter Benchmark

• or CPU overhead to read from the parallel port

• op(P ) processing overhead of a state change

• P number of participating processors

The minimal barrier latency of our toggle - write - read schema (without process
skew) can be predicted with:

tb = ow + op(P ) + or

One write is performed to indicate that the barrier is reached and one read (mini-
mum) is performed to test if all nodes reached their barrier.

3.1 Parameter Benchmark

A benchmark of the single parameters returns the following values on our testcluster
(1 ≤ P ≤ 4):

ow = 1.2µs

or = 1.2µs

op(P ) = P · 10ns

Thus, the running time can be predicted for our cluster with 4 nodes as:

tb = 2 · 1.2µs + 4 · 0.01µs

= 2.44µs

This mechanism is extremely scalable because the overall running time is nearly not
changed even if the op parameter increases linearly.

3.2 MPI Microbenchmark

We benchmark the MPI Barrier() latency to evaluate the hardware in a realistic
environment. We achieve a barrier latency of 2.57µs for all four nodes with the
Pallas Microbenchmark [11]. This shows that the Open MPI framework is highly
efficient and adds only 0.13µs to the MPI Barrier() latency.

Torsten Hoefler Page 6/9



4 CONCLUSIONS AND FUTURE WORK 3.3 MPI Application Benchmark

3.3 MPI Application Benchmark

We use the application Abinit [5] to benchmark our hardware barrier under real-
world conditions with a real-world application. Abinit calculates the ground-state
energy of quantum mechanical systems by optimizing the electron-wavefunctions at
different so called k-points with an iterative scheme. It calls MPI Barrier() between
each iteration and for the collection of data at the end. The k-points can be calcu-
lated independently and communication is only needed at the end of each iteration
and at the end of the calculation itself to gather the results. Thus, the k-point
parallelization in Abinit is highly parallel and the MPI overhead of the application
is only 8%. About 65% of this overhead is caused by MPI Barrier() calls. A single
application run on our Dual-Xeon cluster needs 4:34 min with the standard Open
MPI implementation utilizing the software barrier. The usage of the hardware bar-
rier reduced the running time to 4:27 min. The measurement has been repeated 10
times and the variance has been less than 1 second. Due to the massively parallel
nature of the application, the improvement is only 2.55%. But if we compare the
MPI overheads, we can see that this decreases by 31.77% and the barrier latency is
effectively halved.

4 Conclusions and Future Work

We demonstrate an easy and cheap implementation for adding hardware barrier
support to commodity clusters. The hardware barrier, including all overheads, needs
only 2.5µs+0.01 ·Pµs to perform the MPI Barrier() operation with P nodes in our
testing environment. Our Application benchmark shows that the MPI overhead can
be reduced significantly in the case of frequent barrier usage. The prototypic nature
of our hardware barrier leaves much space for enhancements. The necessity to run
as root could be removed with a small kernel patch. Also the number of supported
barriers could be increased easily to 5. With a more complex addressing scheme,
which enhances the latency, even up to 211 if 11 of 12 outgoing lines would be used
as address vector (the last one remains as status line). An implementation in the
operating system would also be possible (e.g. as /dev/barrier) and would enable
more applications to use it.

Torsten Hoefler Page 7/9



REFERENCES REFERENCES

References

[1] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik
Schauser, Eunice Santos, Ramesh Subramonian, and Thorsten von Eicken.
LogP: towards a realistic model of parallel computation. In Principles Practice
of Parallel Programming, pages 1–12, 1993.

[2] H. G. Dietz, T. M. Chung, T. I. Mattox, and T. Muhammad. Purdue’s Adapter
for Parallel Execution and Rapid Synchronization: The TTL PAPERS Design.
Technical Report, Purdue University School of Electrical Engineering, 1995.

[3] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Don-
garra, Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett,
Andrew Lumsdaine, Ralph H. Castain, David J. Daniel, Richard L. Graham,
and Timothy S. Woodall. Open MPI: Goals, Concept, and Design of a Next
Generation MPI Implementation. In Proceedings, 11th European PVM/MPI
Users’ Group Meeting, Budapest, Hungary, September 2004.

[4] A. Gara, M. A. Blumrich, D. Chen, G. L.-T. Chiu, M. E. Giampapa P. Coteus,
R. A. Haring, P. Heidelberger, D. Hoenicke, G. V. Kopcsay, T. A. Liebsch,
M. Ohmacht, B. D. Steinmacher-Burow, T. Takken, and P. Vranas. Overview of
the blue gene/l system architecture. IBM Journal of Research and Development,
49(2):195–213, 2005.

[5] X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese,
L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami,
Ph. Ghosez, J.-Y. Raty, and D.C. Allan. First-principles computation of mate-
rial properties : the ABINIT software project. Computational Materials Science
25, 478-492, 2002.

[6] Shinichi Habata, Mitsuo Yokokawa, and Shigemune Kitawaki. The earth sim-
ulator system. NEC RESEARCH&DEVELOPMENT, Special Issue on High
Performance Computing, 44(1):21–27, 2003.

[7] Debra Hengsen, Raphael Finkel, and Udi Manber. Two Algorithms for Barrier
Synchronization. Int. J. Parallel Program., 17(1):1–17, 1988.

[8] Torsten Hoefler, Lavinio Cerquetti, Torsten Mehlan, Frank Mietke, and Wolf-
gang Rehm. A practical Approach to the Rating of Barrier Algorithms using
the LogP Model and Open MPI. In Proceedings of the 2005 International Con-
ference on Parallel Processing Workshops, pages 562–569, June 2005.

Torsten Hoefler Page 8/9



REFERENCES REFERENCES

[9] Torsten Hoefler, Torsten Mehlan, Frank Mietke, and Wolfgang Rehm. A
Survey of Barrier Algorithms for Coarse Grained Supercomputers. Chem-
nitzer Informatik Berichte - CSR-04-03, 2004. url: http://archiv.tu-
chemnitz.de/pub/2005/0074/data/CSR-04-03.pdf.

[10] Torsten Hoefler, Jeffrey M. Squyres, Torsten Mehlan, Frank Mietke, and Wolf-
gang Rehm. Implementing a Hardware-based Barrier in Open MPI. In Pro-
ceedings of 2005 KiCC Workshop, Chemnitzer Informatik Berichte, pages –,
November 2005.

[11] Pallas GmbH. Pallas MPI Benchmarks - PMB, Part MPI-1. Technical report,
Pallas GmbH, 2000.

Torsten Hoefler Page 9/9


