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Disclaimer 

ÅThe views expressed in this talk are those of the 

speaker and not his employer or the MPI Forum.

ÅAppropriate papers are referenced in the lower 

left to give co-authors the credit they deserve.

ÅAll mentioned software is available on the 

speakerôs webpage as ñresearch qualityò code to 

reproduce observations.

ÅAll pseudo-codes are for demonstrative purposes 

during the talk only J



Introduction and Motivation

Abstraction == Good!
Higher Abstraction == Better!

ÅAbstraction can lead to higher performance

ïDefine the ñwhatò instead of the ñhowò

ïDeclare as much as possible statically

ÅPerformance portability is important

ïOrthogonal optimization (separate network and CPU) 

ÅAbstraction simplifies

ïLeads to easier code



Abstraction in MPI

ÅMPI offers persistent or predefined:

ïCommunication patterns 
ÅCollective operations, e.g., MPI_Reduce()

ïData sizes & Buffer binding
ÅPersistent P2P, e.g., MPI_Send_init()

ïSynchronization 
Åe.g., MPI_Rsend()



What is missing?

ÅCurrent persistence is not sufficient!

ïOnly predefined communication patterns

ïNo persistent collective operations

ÅPotential collectives proposals:

ïSparse collective operations (pattern)

ïPersistent collectives (buffers & sizes)

ïOne sided collectives (synchronization) 

AMPô10: ñThe Case for

Collective Pattern Specificationò



Sparse Collective Operations
ÅUser-defined communication patterns

ïOptimized communication scheduling

ÅUtilize MPI process topologies

ïOptimized process-to-node mapping

MPI_Cart_create ( comm, 2 /* ndims */, dims, 

periods , 1 /*reorder*/, &cart);

MPI_Neighbor_alltoall ( sbuf , 1, MPI_INT, 

rbuf , 1, MPI_INT , cart, & req );

HIPSô09: ñSparse Collective 

Operations for MPIò



What is a Neighbor?
MPI_Cart_create() MPI_Dist_graph_create()



Creating a Graph Topology

Decomposed 

Benzene (P=6)

+13 point stencil

=Process Topology

EuroMPIô08: ñSparse Non-Blocking 

Collectives in Quantum Mechanical 

Calculationsò



All Possible Calls
ÅMPI_Neighbor_reduce()

ïApply reduction to messages from sources

ïMissing use-case

ÅMPI_Neighbor_gather()

ïSources contribute a single buffer

ÅMPI_Neighbor_alltoall()

ïSources contribute personalized buffers

ÅAnything else needed é ?

HIPSô09: ñSparse Collective 

Operations for MPIò



Advantages over Alternatives

1. MPI_Sendrecv() etc. ïdefines ñhowò 

ïCannot optimize message schedule

ïNo static pattern optimization (only buffer & sizes)

2. MPI_Alltoallv() ïnot scalable

ïSame as for send/recv

ïMemory overhead

ïNo static optimization (no persistence)



An simple Example
ÅTwo similar patterns

ïEach process has 2 heavy and 2 light neighbors

ïMinimal communication in 2 heavy+2 light rounds

ïMPI library can schedule accordingly!

HIPSô09: ñSparse Collective 

Operations for MPIò



A naïve user implementation
for (direction in ( left,right,up,down )) 

MPI_Sendrecv (é, direction, é);

33%

20%

33%

10%

NEC SX-8 with 8 processes IB cluster with 128 4-core nodes

HIPSô09: ñSparse Collective 

Operations for MPIò



More possibilities

ÅNumerous research opportunities in the 

near future:

ïTopology mapping

ïCommunication schedule optimization

ïOperation offload

ïTaking advantage of persistence (sizes?)

ïCompile-time pattern specification

ïOverlapping collective communication 



Nonblocking Collective Operations
Åé finally arrived in MPI J

ïI would like to see them in MPI-2.3 (well é)

ÅCombines abstraction of (sparse) 

collective operations with overlap

ïConceptually very simple:

ïReference implementation: libNBC

MPI_Ibcast ( buf , cnt , type, 0, comm, & req );

/* unrelated comp & comm */

MPI_Wait (& req , &stat)

SCô07: ñImplementation and  

Performance Analysis of  Non-Blocking 

Collective Operations for MPIò



ñVery simpleò, really?
ÅImplementation difficulties

1. State needs to be attached to request

2. Progression (asynchronous?)

3. Different optimization goals (overhead)

ÅUsage difficulties

1. Progression (prefer asynchronous!)

2. Identify overlap potential

3. Performance portability (similar for NB P2P)



Collective State Management
ÅBlocking collectives are  typically 

implemented as loops

ÅNonblocking collectives can use schedules

ïSchedule records send/recv operations

ïThe state of a collective is simply a pointer into the 

schedule

for ( i =0; i <log_2(P); ++ i ) {

MPI_Recv(é, src =(r -2^i)%P, é);

MPI_Send(é, tgt =(r+2^i)%P, é);

}

SCô07: ñImplementation and  

Performance Analysis of  Non-Blocking 

Collective Operations for MPIò



NBC_Ibcast() in libNBC 1.0

compile to

binary schedule

SCô07: ñImplementation and  

Performance Analysis of  Non-Blocking 

Collective Operations for MPIò



Progression
MPI_Ibcast ( buf , cnt , type, 0, comm, & req );

/* unrelated comp & comm */

MPI_Wait (& req , &stat)

Synchronous Progression Asynchronous Progression

Clusterô07: ñMessage Progression 

in Parallel Computing ï

To Thread or not to Thread?ò



Progression - Workaround

ÅProblems:

ïHow often to test?

ïModular code L

ïItôs ugly!

MPI_Ibcast ( buf , cnt , type, 0, comm, & req );

/* comp & comm with MPI_Test () */

MPI_Wait (& req , &stat)



Threaded Progression

ÅTwo obvious options:

ïSpare communication core

ïOversubscription

ÅItôs hard to

spare a core!

ïmight change



Oversubscribed Progression
ÅPolling == evil!

ÅThreads are not 

suspended until 

their slice ends!

ÅSlices are >1 ms

ïIB latency: 2 us!

ÅRT threads force

Context switch

ïAdds costs

Clusterô07: ñMessage Progression 

in Parallel Computing ï

To Thread or not to Thread?ò



A Note on Overhead Benchmarking

ÅTime-based scheme (bad):
1. Benchmark time t for blocking communication

2. Start communication

3. Wait for time t (progress with MPI_Test())

4. Wait for communication

ÅWork-based scheme (good):
1. Benchmark time for blocking communication

2. Find workload w that needs t to be computed

3. Start communication

4. Compute workload w (progress with MPI_Test())

5. Wait for communication

K. McCurley:ñThere are lies, 

damn lies, and benchmarks.ò



Work-based Benchmark Results

Spare Core Oversubscribed

32 quad-core nodes with InfiniBand and libNBC 1.0

Low overhead 

with threads

Normal threads perform worst!

Even worse man manual tests!

RT threads can help.

CACô08: ñOptimizing non-blocking 

Collective Operations for InfiniBandò



An ideal Implementation
ÅProgresses collectives independent of 

user computation (no interruption)

ïEither spare core or hardware offload!

ÅHardware offload is not that hard!

ïPre-compute communication schedules 

ïBind buffers and sizes on invocation

ÅGroup Operation Assembly Language 

ïSimple specification/offload language



Group Operation Assembly Language

ÅLow-level collective specification 
ïcf. RISC assembler code

ÅTranslate into a machine-dependent form
ï i.e., schedule, cf. RISC bytecode

ÅOffload schedule into NIC (or on spare core)

ICPPô09: ñGroup Operation Assembly 

Language - A Flexible Way to Express 

Collective Communicationò



A Binomial Broadcast Tree

ICPPô09: ñGroup Operation Assembly 

Language - A Flexible Way to Express 

Collective Communicationò



Optimization Potential
ÅHardware-specific schedule layout

ÅReorder of independent operations

ïAdaptive sending on a torus network

ïExploit message-rate of multiple NICs

ÅFully asynchronous progression

ïNIC or spare core process and forward messages 

independently

ÅStatic schedule optimization 

ïcf. sparse collective example



A Userôs Perspective
1. Enable overlap of comp & comm

ïGain up to a factor of 2

ïMust be specified manually though

ïProgression issues L

2. Relaxed synchronization

ïBenefits OS noise absorption at large scale

3. Nonblocking collective semantics

ïMix with p2p, e.g., termination detection



Patterns for Communication Overlap

ÅSimple code transformation, e.g., 

Poisson solver various CG solvers

ïOverlap inner matrix product with halo 

exchange 

PARCOô07: ñOptimizing a Conjugate 

Gradient Solver with Non-Blocking 

Collective Operationsò



Poisson Performance Results

InfiniBand (SDR) Gigabit Ethernet

128 quad-core Opteronnodes, libNBC 1.0 (IB optimized, polling)

PARCOô07: ñOptimizing a Conjugate 

Gradient Solver with Non-Blocking 

Collective Operationsò



Simple Pipelining Methods

ÅParallel linear array transformation:

ÅWith pipelining and NBC:

for( i =0; i <N/P; ++ i ) transform( i , in, out);

MPI_Gather (out, N/P, é);

for( i =0; i <N/P; ++ i ) {

transform( i , in, out);

MPI_Igather (out[ i ], 1, é, &req [ i ]);

}

MPI_Waitall ( req , i , &statuses);

SPAAô08: ñLeveraging Non-blocking 

Collective Communication in 

High-performance Applicationsò



Problems

ÅMany outstanding requests

ïMemory overhead

ÅToo fine-grained communication

ïStartup costs for NBC are significant

ÅNo progression 

ïRely on asynchronous progression?



Workarounds

ÅTile  communications

ïBut aggregate how many messages?

ÅIntroduce windows of requests

ïBut limit to how many outstanding requests?

ÅManual progression calls

ïBut how often should MPI be called?



Final Optimized Transformation

for( i =0; i <N/P/t; ++ i ) {

for(j= i ; j< i+t ; ++j) transform(j, in, out);

MPI_Igather (out[ i ], t, é, &req [ i ]);

for(j= i ; j>0; j - =f) MPI_Test (& req [ i - f], &fl, & st ); 

if( i >w) MPI_Wait (& req [ i - w]);

}

MPI_Waitall (& req [N/P - w], w, &statuses);

for( i =0; i <N/P; ++ i ) transform( i , in, out);

MPI_Gather (out, N/P, é);

Inputs: t ïtiling factor, w ïwindow size, f ïprogress frequency

SPAAô08: ñLeveraging Non-blocking 

Collective Communication in 

High-performance Applicationsò



Parallel Compression Results
for( i =0; i <N/P; ++ i ) size += bzip2( i , in, out);

MPI_Gather (size, 1, é, sizes, 1, é);

MPI_Gatherv (out, size, é, outbuf , sizes, é);

Optimal tiling factor



Parallel Fast Fourier Transform
ÅData already transformed in y-direction 



Parallel Fast Fourier Transform
ÅTransform first y plane in z



Parallel Fast Fourier Transform
ÅStart ialltoall and transform second plane



Parallel Fast Fourier Transform
ÅStart ialltoall (second plane) and transform third



Parallel Fast Fourier Transform
ÅStart ialltoallof third plane and é



Parallel Fast Fourier Transform
ÅFinish ialltoall of first plane, start x transform



Parallel Fast Fourier Transform
ÅFinish second ialltoall, transform second plane



Parallel Fast Fourier Transform
ÅTransform last plane Ÿ done


