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Quantum computers promise to perform certain computations exponentially faster than any classical de-
vice. Precise control over their physical implementation and proper shielding from unwanted interactions
with the environment become more difficult as the space/time volume of the computation grows. Code
optimization is thus crucial in order to reduce resource requirements to the greatest extent possible. Besides
manual optimization, previous work has adapted classical methods such as constant-folding and common
subexpression elimination to the quantum domain. However, such classically-inspired methods fail to exploit
certain optimization opportunities across subroutine boundaries, limiting the effectiveness of software reuse.
To address this insufficiency, we introduce an optimization methodology which employs annotations that
describe how subsystems are entangled in order to exploit these optimization opportunities. We formalize
our approach, prove its correctness, and present benchmarks: Without any prior manual optimization, our
methodology is able to reduce, e.g., the qubit requirements of a 64-bit floating-point subroutine by 34x.
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1 INTRODUCTION

Quantum computers promise to solve certain computational tasks exponentially faster than classical
computers. As a result, significant resources are being spent in order to make quantum computing
become reality. In anticipation of the first quantum computers, the most promising applications
are being identified and manually optimized for specific problems of practical interest, resulting
in great resource savings [Gidney and Ekera 2019; Héner et al. 2017; Hastings et al. 2015; Kutin
2006; Reiher et al. 2017]. Such improvements are crucial, given the considerable overhead due to
quantum error correction [Fowler et al. 2012] and the difficulty of engineering large-scale quantum
computers.

To identify promising applications for quantum computing, it is necessary to develop a detailed
understanding of all components of the quantum algorithm being studied. One possible approach
is to implement the algorithm in a quantum programming language, as this also enables testing
and debugging. To this end, a host of software packages, programming languages, methodologies,
and compilers for quantum computing have been developed [Chong et al. 2017; Green et al. 2013;
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@ Quantum logic

Classical logic Extracted information:
qureg regln]; Vie {0,...,n—1}: reg[i] = |0)
: [updates to reg]
while Measure(q) == 0: q =10)
set pos = find_first1(reg); Vi < pos : reg[i] = |0)

shift(reg, pos); reg[0] # |0)

Fig. 1. Example depicting a quantum program and the corresponding information that our methodology
infers from the postconditions of both classical and quantum subroutines. It uses this information to exploit
optimization opportunities that arise due to subroutine composition. Here, the shift subroutine may be
optimized, as discussed in Section 5.

IBM 2018; JavadiAbhari et al. 2014; Paykin et al. 2017; Smith et al. 2016; Steiger et al. 2018; Svore
et al. 2018]. In addition to providing the necessary layers of abstraction to facilitate software
development, these packages include optimizing compilers that aim to reduce width and depth of
the resulting quantum circuit, e.g., by merging operations at various layers of abstraction [Héner
et al. 2018b]. Further optimization opportunities can be created by employing a set of commutation
relations [Nam et al. 2018] to reorder operations. Moreover, several methods have been developed
for exact circuit synthesis with certain optimality guarantees [Amy et al. 2013; Grofle et al. 2007,
2009; Kliuchnikov et al. 2013; Meuli et al. 2018]. While these methods alone are not suitable for
optimization of large-scale quantum circuits, they can be combined with heuristics [Amy et al.
2014; Nam et al. 2018].

Despite these efforts, most of the progress made in, e.g., quantum chemistry has been due to
manual optimization [Hastings et al. 2015; Jones et al. 2012]. This suggests that the capabilities of
optimizing compilers may still be significantly improved; especially at higher levels of abstraction
where manual optimizations are carried out today. Such optimization opportunities usually arise
when two or more existing subroutines are combined instead of directly implementing the desired
functionality more efficiently. Exploiting these opportunities is only possible when optimizing
across the boundaries of both quantum and classical subroutines. To enable such transformations,
an optimizing compiler requires access to additional information such as the circumstances under
which a given subroutine is invoked. While compilers may not be able to infer the semantics of a
given program and its subroutines, such information may be extracted from assertions, and then
used for program optimization. Specifically, we propose to use the pre- and postconditions of each
subroutine in order to gather information about the state of the quantum computer before and
after completion of the subroutine. Fig. 1 depicts a mixed quantum/classical code example and
annotations of postconditions and derived facts for both classical and quantum subroutines. The
gathered information may then be combined, e.g., with conditions specifying the circumstances
under which a given subroutine acts trivially. If these conditions are met, our methodology removes
such operations and is thus able to reduce both space and time requirements of a given quantum
program.
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Contributions. We develop a formalism that allows us to express (1) how subsystems (subsets of
qubits) of the quantum computer are entangled and (2) under what circumstances the program
may be optimized. Our methodology then uses this information for quantum program optimization.
We prove its correctness and present a prototype implementation that successfully reduces the
quantum resource requirements of common arithmetic subroutines by up to 410x (for a 64-bit
floating-point subroutine). The chosen subroutines are frequently used in a wide range of quantum
algorithms, including Shor’s algorithm for factoring [Shor 1994], HHL for solving linear systems
of equations [Harrow et al. 2009], algorithms for quantum chemistry [Babbush et al. 2016], and
Grover’s algorithm [Grover 1996] when used for optimization. Our proposed automatic program-
level optimizations are thus beneficial for a wide range of quantum computing applications.

Related work. By carrying out optimizations across different subroutines of the quantum program,
our methodology complements available tools for lower-level circuit optimization and synthe-
sis [Amy et al. 2014, 2013; Nam et al. 2018]. Crucially, our methodology enables more effective use
of abstractions when implementing libraries for quantum computing because it is able to remove
the resulting overheads. Furthermore, previous work on high-level quantum program optimiza-
tion [Héner et al. 2018b; Steiger et al. 2018], which adapted common subexpression elimination
and constant-folding to the quantum domain, cannot handle the examples we present in Section 5.
Moreover, the verification of quantum programs has been addressed through the introduction of a
quantum Hoare logic [Ying 2012]. In contrast, our methodology uses the information that it gathers
from pre- and postconditions of subroutines for optimization purposes.

2 PRELIMINARIES

In this section, we provide some background on quantum computing and quantum programs.
For a more in-depth treatment of quantum computing, we refer to the textbook by Nielsen and
Chuang [Nielsen and Chuang 2010].

2.1 Qubits and Gates

Whereas classical computers manipulate bits in order to solve a certain computational task, their
quantum counterparts operate on so-called quantum bits, or qubits. A qubit is a two-level quantum
system, i.e., a system which can be in two distinguishable states. An example would be the ground
and first excited state of an ion, where we can denote the ground state by 0 and the first excited
state as 1.

The principle of quantum superposition states that a single qubit can be in a complex superposition
of its two levels. This means that there are two complex numbers associated with the quantum state
of a qubit: the contribution from the 0-state and another one from the 1-state. Let us denote these
two complex numbers by g and a1, respectively, where we require that |ag|? + |a;|? = 1. Given
a qubit in a quantum state which is described by these two values, the probability of observing
the qubit in state 0 or 1 is |ag|? or |a1|?, respectively. Note that the normalization condition above
ensures that the two probabilities sum up to 1.

If we add a single qubit to a system of n — 1 qubits, the resulting system must be described in
general using twice as many complex values due to quantum entanglement. Two subsystems being
entangled means that one cannot write down the state of the entire system as a product state of
the two subsystems. As a result, operations that act on one subsystem (such as measurement) may
have nontrivial effects on the other. The state of an n-qubit quantum computer can be described
using 2" complex amplitudes that correspond to the contributions stemming from the all-zero state,
the all-zero state but where the last bit is 1, up to the all-one state. We denote the corresponding
amplitudes by ag...00, @0---01, ---» @1...11 and, as a simplification, we interpret the indices as a number
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0) 1H
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Fig. 2. Quantum circuit example: Each line represents a qubit and operations are drawn as boxes (e.g., the
Hadamard operation H) or other symbols such as the controlled NOT or CNOT, which is depicted as @
connected and attached to the filled circle on the control qubit. Time advances from left to right.

written in binary format, allowing to write ag, a1, ..., 22n_1. When reading out, or measuring, all n
qubits, the probability of observing the binary representation of i is given by |&;|?. Once observed,
the entire quantum system collapses onto the observed outcome, meaning that o; = 1 and a; = 0
for all j # i. In particular, repeated measurement results in the same answer.

When dealing with quantum systems, one typically employs the so-called Dirac notation, where
state vectors correspond to so-called kets that are denoted by |-), e.g., |¢). Continuing the example
from above, let |i/) denote the quantum state of an n-qubit quantum computer. Using |i) with
i€{0,1,...,2" — 1}, we can write

2n_1
vy =D aliy,
i=0
with a; € C the contribution from the |i)-state and ', |a;|?> = 1. As above, the binary representation
of i lets us determine the value of each of the n qubits in the i-th basis state |i). We note that the
set {|i),i € {0, ...,2" — 1}} is called the computational basis in the quantum computing literature.

Due to the relationship between amplitudes and probabilities, all operations on qubits, so-called
quantum gates, must preserve inner-products. As a result, quantum gates must be unitary, which
means that for a quantum gate U,

v'u=uut=1,
where U' denotes the Hermitian adjoint of U. Note that this also implies that all quantum gates must
be reversible and, therefore, that only reversible operations can be implemented using quantum

gates. Such unitary operations may also be applied controlled on another qubit, meaning that they
are applied if the control qubit is 1. Formally, the controlled version of U is

U= 0)(0] @1 +|1){1|®U,

where |c) {c| is the projector onto the subspace in which the control qubit has the value ¢ € {0, 1}
and ® denotes the tensor product. Since the control qubit may be in a superposition, the state after
applying U° is in a superposition of having and not having applied U.

2.2 Quantum Programs

A quantum program is a classical program that, in addition to classical instructions, executes so-
called quantum circuits on a quantum co-processor. In a quantum circuit, each qubit is represented
as a horizontal line and quantum gates are denoted by boxes or other symbols on these lines, with
time moving from left to right. See Fig. 2 for an example. It consists of a Hadamard gate H and a
controlled NOT or CNOT gate. The CNOT is drawn as a NOT gate (denoted by &) that is connected
to a filled circle on the control qubit.
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Definition 2.1. Quantum instruction. Let O |qy, ..., qx) denote a quantum instruction. It consists
of an operation O and a k-tuple of qubits (q1, ..., k), Wwhere the operation may be a quantum gate
or a classical instruction (allocation, deallocation, measurement).

Every circuit consists of the following 4 steps:

(1) Allocate n qubits in state [0)®" := |0 - - - 0) (n zeros)
(2) Apply quantum gates to these qubits

(3) Measure some or all of the qubits

(4) Deallocate measured qubits

Upon completion, the quantum co-processor returns a set of classical bits, the so-called measurement
results. Depending on these results, the classical processor may then provide further quantum
circuits to evaluate in order to solve the computational problem at hand. At the end of the entire
quantum program, all qubits are deallocated again.

Since qubits are an extremely scarce resource, it is crucial to keep the number of allocated qubit
minimal at any given point throughout the circuit and to deallocate all qubits which are no longer
in use. Using the principle of deferred measurement [Nielsen and Chuang 2010], this means that as
soon as the last operation on a given qubit has finished, the qubit can be measured and then freed
for further use in the ongoing computation.

3 QUANTUM PROGRAM OPTIMIZATION USING ASSERTIONS

In this section, we introduce the basic idea of our assertion-based optimization methodology,
followed by a proof of its correctness.

3.1 Entanglement Description Assertions for Quantum Program Optimization

Our goal is to use the knowledge of how subsystems are entangled for the purpose of quantum
program optimization. To this end, we introduce the concept of entanglement description assertions
that capture this information.

In particular, we introduce a formalism to describe the entanglement between qubits of the
quantum computer throughout the execution of the quantum circuit. This entails statements that
assert entanglement descriptions (to be defined next), that is, statements of the form

‘a==f(a, r)" "ax f(a, r), etc,

where q and r refer to quantum registers and f is a function of two registers returning one register
of bits. Since q and r refer to quantum registers, they may be in superposition and entangled with
other qubits in the system. The following definition assigns a precise meaning to these entanglement
description assertions with respect to the state vector of the entire n-qubit quantum computer,

271

vy = > ali) .
i=0
Definition 3.1. Entanglement description assertion. Let Ocyp denote a comparison operator,

f:{0,1}% x {0,1}™ — {0, 1}* a function on k + m bits returning k bits, and let g, r be quantum
registers consisting of k and m qubits, respectively. The entanglement description assertion A(q,r) =
d Oemp f(a, r)on the n-qubit quantum state |/) asserts that

Vie{0,...,2" =1} : (Ja;| > 0 = A(L2(), %)) ,

where the functions 2 : {0,1}" — {0,1} and Z : {0,1}" — {0,1}™ extract the bits correspond-
ing to the quantum registers q and r, respectively, from the n-bit index i of the computational basis
state |i) = |ip—1, ..., o).
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With this definition in place, let us revisit the |0)-control qubit example from the previous section
and cast it as an entanglement description assertion.

Example 3.2. To express that a control qubit (denoted by |c)) is in a definite state |0), let f(:,-) =0
and Ocmp be the equals comparison operator in the above definition. Then A(c, -) = (¢ == 0). For
the corresponding state |¢/), this means that a; = 0 whenever i corresponds to a state where the
control qubit is 1. As a result, the action of a controlled gate U° on |¢/) is always trivial.

This shows that such assertions can be used to express knowledge about qubits that are in a
definite state. This piece of information can, when combined with classical constant-folding, be
used for optimization. However, in order to do so in a more general setting, the optimizer also needs
information which specifies the conditions for an operation to be trivial. We call this information
triviality conditions.

Definition 3.3. Triviality condition. Let A(q, r) be an entanglement description assertion on the
quantum state |/). A(q, r) is a triviality condition of a quantum operation U if

Alg.r) = Uly)y =1y) .
meaning that U acts as the identity if A(q, r) is satisfied by [¢/).

Example 3.4. Continuing the |0)-control qubit example, the triviality condition of the controlled
unitary U¢ would read {¢ == 0} and, if this is satisfied as in the previous example, U may be
removed from the circuit.

Therefore, using these two definitions, we can describe and carry out classical constant-folding.
In order to see that this approach is strictly more powerful than classical constant-folding, consider
the following example.

Example 3.5. Let |{) denote the quantum state of a two-qubit quantum computer. Initially,
|/) = |00) and our quantum program consists of two operations: 1) Prepare a Bell-pair and 2) swap
the two qubits by applying a Swap gate. The Bell-pair preparation routine has {qo == 0, ¢1 == 0}

as preconditions and ensures that {gy == ¢1} as a postcondition. In particular, given that the
preconditions are satisfied, the Bell-pair preparation circuit in Fig. 2 transforms the state |00) to
1
—=(100) +[11)) ,

V2

The amplitudes of this quantum state are agg = 1/ V2, ap1 = a9 =0,and ay; =1/ V2. Tt is easy to
check that the postcondition holds, i.e., that

Vie{0,1,2,3} : |ai| >0 = {ip == i1},

where iy and i; denote the Oth and 1st bit of i, respectively. Since swaps are trivial if go == q1,
which is satisfied by the state above, the Swap gate can be removed from the circuit. We note that
the same reasoning applies if the Hadamard gate in the Bell-pair preparation circuit is replaced
by an arbitrary rotation gate. In this case, ap; = 19 = 0 still holds, and so the Swap gate may be
removed.

Since the quantum state in the example above is in a superposition, it is clear that regular
constant-folding cannot successfully perform this optimization. Using our entanglement description
assertions, however, this becomes feasible. This shows that optimization using entanglement
description assertions is strictly more powerful than classical constant-folding.
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3.2 Correctness of Our Methodology
We now prove that optimizations based on entanglement description assertions and triviality
conditions leave the action of the overall quantum program invariant.

THEOREM 3.6 (CORRECTNESS). Let C be a quantum circuit that gets sent to a perfect' quantum
device during execution of the quantum program P. Applying assertion-based optimization to C will
not change the output of P.

Proor. Let A(g, r) denote an entanglement description assertion on the state |i/) of the quantum
device at a given point during the execution of C and let U be the next subroutine to be executed.
Moreover, let A’(g, r) be a triviality condition of U such that

Alg.r) = Ag.r). (1)
Then, applying U is equivalent to

2"-1

ZaiUli)
i=0
Z U i) + Z ;U |i)

it A(L2(i), %2(i)) i:mA(L2(i), Z(i))
We know that —=A(2(i), Z(i)) = «; = 0, since |{) satisfies A(g, r). Thus,

V) = Uly)

ulpy= ), auld.
i:A(2(i), Z(i))

Now, for all i in this superposition, A’ (2(i), Z(i)) holds due to (1) and U acts as the identity, i.e.,
Vi: A(20), %) = Uli) = i),
which lets us conclude that
Ulpy= > ald =,
i:A(2(0), (i)

Removing U from C does thus not affect |/) and, in particular, the final outcome of running $ will
not change by performing this optimization. Furthermore, our methodology will not modify the
circuit if (1) does not hold. O

4 FORMALIZATION AND GENERALIZATION

In this section, we formalize the pre- and postconditions that are necessary to handle all examples in
this paper, including the practical examples that will be introduced in the next section. Furthermore,
we introduce a generalization of our methodology that is strictly more powerful.

4.1 Formalization of Our Basic Methodology

In order to formalize the basics of our methodology, we first define the pre- and postconditions
of the quantum subroutines that are required for our examples in Table 1, where X(gq) denotes
application of a Pauli-X [Barenco et al. 1995] gate to qubit q.

From the pre- and postconditions of the Swap operation, it is also apparent that a Swap is trivial
if ¢; == gq;; a fact that we already used in Example 3.5.

ISince circuit optimization may improve, e.g., success probability for a real device, we assume a hypothetical, perfect device.
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Table 1. Pre- and postconditions of the quantum subroutines that are required to optimize our examples.

Operation  Preconditions Postconditions
g-Alloc(n) {g=0neN}  {q=[0)*"}
Dealloc(q) ~ {q=10)*"} {q =0}
Swap(qi.q;)) {qi = A.q; = B} {qi =B,q; = A}
X(q) {g=AAe{0,1}} {g=Aal}

In addition to the pre- and postconditions above, we require a formal description of the control
modifier, which turns a given quantum subroutine U into its controlled version U¢, where c refers
to the control qubit. The postcondition corresponding to

control(U)(c, q)

is {g = U°|¢)}, where U€ is U on the subspace where ¢ = |1) and U® = 1 on the subspace where
¢ = |0), and |¢) denotes the state of the g-register before applying control(U).

The pre- and postconditions of higher-level subroutines may be defined in a similar fashion.
However, when combined, the pre-/postconditions above are sufficient for our examples. E.g.,
combining the control modifier with the NOT or Pauli X gate allows us to optimize the Bell-pair
example where, after an initial Hadamard gate H [Barenco et al. 1995] on |00), the controlled NOT

gate was applied as follows
1 CNOT

1
\/5(|0> +[1))10) " E(IO()) +[11)) .

Since the controlled NOT gate flips the qubit in |0) if the control qubit is one, we immediately get
the postconditions for the two qubits gg and g

{q =X 10)} = {q1 ==qo},
by combining the pre- and postconditions of the control modifier and the Pauli X gate. Together
with the triviality condition of the Swap gate acting on two qubits ¢; and g;,

Hy|0)10) =

{qi ==gq;}.
we can again remove the Swap gate from the circuit of the Bell-pair example. Similarly, the pre-
and postconditions for CNOT can be used to identify the optimization opportunity in the following
example.

Example 4.1. In addition to circuit optimizations at the logical level, entanglement description
assertions and triviality conditions can be used to optimize the circuit for a specific target architec-
ture. Consider the compilation steps outlined in Fig. 3. After mapping the circuit in (a) to a linear
nearest-neighbor connectivity with additional optimizations to cancel intermediate partial Swap
chains results in the circuit (b). As before, we can employ our assertion-based optimizer to remove
trivial CNOT gates using the fact that after each red CNOT gate acting on g; and g;1, it holds that
qi == qi+1- The optimized circuit is shown in Fig. 3(c).

4.2 Generalized Optimization Methodology

By generalizing the basic methodology above, we can greatly increase its optimization capabilities.
So far, our optimizer considers single gates at any given point together with all available postcondi-
tions of previously executed subroutines. For each such gate, it then determines whether it can be
removed from the circuit without altering its output. The generalized strategy considers multiple
gates and checks whether the supplied postconditions allow to deduce that the combined action of
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(a) Original circuit for entangling all qubits (c) Circuit for LNN after optimization.
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(b) Circuit for LNN before A.B. opt.

Fig. 3. Optimizing a chain of CNOTs for a linear nearest-neighbor (LNN) architecture such as the 9-qubit
chip by Google [Kelly et al. 2015] by employing the pre- and postconditions of CNOT gates. The benefit of
our assertion-based optimization (A.B. opt.) can be seen clearly when comparing the circuits in (b) and (c):
No extra CNOTs due to Swaps [Kutin et al. 2007] are necessary in (c), resulting in much lower gate count
and circuit depth.

these gates is trivial, in which case all of these gates can be removed from the circuit. In order to
properly introduce our generalized methodology, we first require a few definitions.

Definition 4.2. Set of control qubits. For an instruction U |q1, ..., qx) acting with a (unitary) gate
U on k qubits, a set of qubits S C {q1, ..., qx } is called a set of control qubits if there exists a sequence
of Swap gates sy, ..., s; acting on pairs from {qi, ..., gx } and a unitary U’ such that with S denoting
the unitary which performs sy, ..., s;, the following three statements hold.

QVsuSs =@-1--- DA 1)L +]L---1)({1---1| U’

(2) the sequence of Swaps (s1, ..., s;) permutes (g1, ..., gx) such that the first |S| qubits of the

resulting tuple are in S
(3) S is the largest such set.

For instructions featuring a non-unitary operation (measurement, allocation, deallocation), the set

of control qubits is empty.

We note that there may be multiple distinct sets of control qubits for a given instruction (as in
the following example). For instructions where multiple choices exist, we choose a set of control
qubits once and keep it invariant throughout the optimization process.

Example 4.3. As an example of an instruction where multiple choices exist for the set of control
qubits, consider the Z€ operation applied to |q1qo), where Z acts with a (—1)-phase on |1) and
leaves |0) invariant. It is easy to check that

Z°=10) (0|1l +1)(1|®Z
=1e10)(0l+Ze 1) (1],
since for Z¢ to be nontrivial, both qubits need to be in |1). Either qubit can thus be chosen to be

the control qubit and, thus, the set of control qubits is not unique.
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Fig. 4. Simple example of our multi-gate optimization methodology: The first gate is applied if and only if
the last gate is applied (irrespective of the input state |g2, g1, go)). Since the U gate is the inverse of UT, we
can cancel the two doubly-controlled gates.
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Fig. 5. Three-qubit example of a modular adder subroutine which performs the modular reduction. It consists
of a comparison, the result of which is stored in the qubit [cmp), and a conditional subtraction. In this setting,
our generalized methodology is able to deduce that the two red multi-controlled NOT gates can be canceled,
allowing to completely remove the carry qubit |c). In a modular multiplier, n qubits would be saved since
qubit reuse is not generally possible without uncomputation [Bennett 1973].

Definition 4.4. Target qubit. A qubit ¢ in an instruction U |..., g, ...) is called a target qubit if it is
not in the set of control qubits of the instruction U |..., g, ...).

Definition 4.5. Target-successive instructions. Two instructions I, I with identical target qubits
are called target-successive if no other instructions are scheduled to be executed between I; and I
that involve the target qubits in a way that does not commute with neither I; nor L.

Our generalized methodology considers M > 1 target-successive instructions at once, where all
M instructions have the same ¢ target qubits and arbitrary controls. Ignoring the control qubits, let
Ui, ..., Uy denote the ¢-qubit gate matrices of these instructions. An optimization can be performed,
for example, if

Up - Up = Torgor
and the postconditions on the control qubits are such that either all or none of the gates get executed.
A simple example with M = 2 and t = 1 is depicted in Fig. 4, where the two doubly-controlled
gates can be canceled using this reasoning.

We now give a practical example where our multi-gate optimization strategy performs better
than the single-gate methodology discussed thus far.

Example 4.6. Consider a circuit that performs addition modulo a quantum number N (stored in
another quantum register), i.e.,

la) |b) IN) = |(a+ b)mod N) |b) |N) .
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A possible implementation is to first perform the regular addition, followed by a modular reduction
if the result is greater than |N). Since we only subtract N if (a + b) > N, the result will always be
non-negative and, as a consequence, the final carry qubit will always be zero and it can thus be
removed from the subtraction circuit. When using the addition circuit by Takahashi et al. [Takahashi
et al. 2010], the optimizer needs to remove the two red multi-controlled NOT gates in Fig. 5 which
act on the carry qubit in order to exploit this optimization opportunity. Neither of these gates is
trivial on its own, but in this setting, either both or none of the two gates are triggered. As a result,
this optimization can only be performed using our generalized approach. The achieved reduction
in circuit width and depth can be found in Section 7, which discusses the results obtained using
our implementation.

5 PRACTICAL EXAMPLES

Example 3.5 illustrates that optimization using entanglement description assertions is more powerful
than classical constant-folding. Furthermore, Example 4.6 shows that our generalized methodology
is strictly more powerful than regular assertion-based optimization. In this section, we discuss
several practical examples that can be optimized using entanglement description assertions, but
not using existing approaches for quantum circuit optimization. We mainly consider subroutines
for quantum arithmetic, which is essential for most applications.

Perhaps surprisingly, most of the quantum gates required to run Shor’s algorithm for factor-
ing [Shor 1994] are due to the evaluation of modular exponentiation. In contrast to their classical
counterparts, quantum computers must evaluate such classical functions on a superposition of
inputs. Because the input is in a superposition, these functions cannot simply be evaluated on a
classical computer. This would require reading out the state of the system, which would collapse the
superposition and, thus, destroy any quantum speedup. Rather, these functions have to be imple-
mented in terms of quantum gates in order to run them directly on the quantum computer. Further
examples where the evaluation of such classical functions on a quantum computer is necessary
are 1) the HHL algorithm for solving linear systems of equations, which requires computing the
reciprocal [Harrow et al. 2009] and 2) certain algorithms for solving quantum chemistry problems:
Babbush et al. [Babbush et al. 2016] have reduced the asymptotic runtime of a chemistry simulation
algorithm by computing the entries of the Hamiltonian on-the-fly. This involves evaluating the
Coulomb potential and various other mathematical functions which, e.g., describe the chosen
orbitals.

In order to enable execution of such classical functions on a quantum computer, one may start
by implementing subroutines for basic arithmetic such as addition and multiplication [Haener
et al. 2018] in terms of quantum gates. These modules can then be combined to enable evaluating
polynomials and further higher-level mathematical functions. We use the resulting subroutines as
benchmarks and show how our methodology is able to reduce the quantum resource requirements.

5.1 Floating-Point Arithmetic Subroutine

As a first example in this section, we consider a subroutine that is omnipresent in floating-point
arithmetic, namely that of renormalization. Renormalization is used during floating-point compu-
tations in order to bring intermediate results back into proper floating-point form. This can be
achieved using two subroutines: The first subroutine determines the position p of the first nonzero
bit of the mantissa. The second subroutine then shifts the mantissa to the left by the output of the
first subroutine. A quantum circuit which determines the position of the first nonzero bit is shown
in Fig. 6 and a circuit which shifts the mantissa |x) by |p) positions is depicted in Fig. 7. In order for
the shift circuit to work properly for any input, it must allocate 2"» — 1 extra work qubits in order
to catch the overflow from the shifted |x), where n, is the number of qubits in the position register
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Fig. 6. Example of a circuit which finds the first nonzero bit of |x) and stores its position in |p) where |x) is a
4-qubit register and the position register |p) consists of two qubits [Haener et al. 2018]. The flag qubit |f) is
one as long as the first one has not been found.

Fig. 7. Optimization of the shift circuit that can be performed if |p) contains the position of the first nonzero
bit. Red Fredkin gates can be removed via regular constant-folding. Blue Fredkin gates can be removed using
the postconditions of the subroutine depicted in Fig. 6 . As a result, all 2”7 — 1 work qubits can be eliminated
(dotted lines).

|p). However, in the case where the input to the shift circuit gets initialized by the circuit which
determines the position of the first one, such an overflow never occurs. As a result, the 2" — 1
work qubits can be eliminated from the combined circuit.

Identifying this optimization opportunity in the complete program is nontrivial and without some
description of the action of gates or entire subroutines, such an optimization becomes completely
infeasible for large circuits (as it would require simulation thereof for all inputs). We thus introduce
a notion of how gates and subroutines interact by providing appropriate entanglement description
assertions.

For this concrete example, consider the postcondition of the subroutine which determines the
position pos of the first nonzero bit of |x). It asserts that the first pos qubits of x are zero, i.e.,

Vi€ 0..pos-1:x[i] == 0,
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where pos and x are entangled quantum variables. We can express this equivalently as an entangle-
ment description assertion with

Aro(x,p) = (x <2"7),

where x is interpreted as an integer with xy as the most-significant bit (MSB) and p corresponds
to the position register pos from above with py being the least-significant bit (LSB). Using this
postcondition, we now optimize the circuit in Fig. 7, which achieves the desired shift. Clearly, the
red controlled Swap gates — also known as Fredkin gates — can be removed since they act on newly
allocated qubits which are zero (the postcondition of qubit-allocation says that ¢ = |[0)®"). The
left-most blue Fredkin gate is a Swap gate controlled on the 0-th bit of [p) and thus acts trivially
if pg = 0. Furthermore, the Swap itself is trivial if x; = 0 because all ancilla qubits are still in |0).
Combining these two triviality conditions of the controlled Swap gate with the postcondition above
yields that the blue Fredkin gate may act nontrivially only if

P>0)A(x<2"P)A(xg 2 0),

where xy denotes the MSB of the n-qubit register x. Clearly, these conditions cannot hold simul-
taneously and, as a result, the first blue Fredkin gate in Fig. 7 can be removed. Combining the
postconditions of the Fredkin gates with Apo(x, p) yields a new assertion with

Anew(x»p) = (2_p0x < 2n—p)
= (x < 2"7PPoy |

because if the first bit of the position register pg is one, we have just shifted all of x by one position.
Since we successfully removed the first blue Fredkin gate, we can employ regular constant-folding
to cancel the second blue Fredkin gate as well (all ancilla qubits are still in |0)). For the final two
blue Fredkin gates, note that they act nontrivially only if

(1 #0)A((x0 #0) V (x1 # 0)).

From which we can use p; # 0 and combine it with the updated postcondition with a case-distinction
on po: If pg is zero, then p > 2 and if py is one, we have that p > 3 and that there is a shift of +1 in
the exponent of the updated postcondition. Thus, in both cases,

x < 2"72

and hence, the two most-significant bits xg, x1 of x must be zero. The action of the remaining two
blue Fredkin gates is therefore always trivial and they can also be removed from the circuit. Finally,
since none of the allocated overflow qubits will be used anymore throughout the computation (as
their content is always trivial in this application), they will eventually get deallocated without any
operations having acted on them. It is then a simple local optimization to cancel allocations with
subsequent deallocations, allowing to reduce the width of the resulting circuit by 2" — 1 qubits, as
desired.

5.2 Fixed-Point Arithmetic Subroutine

Similar optimization opportunities arise when using a fixed-point representation. As an example,
consider the evaluation of a function using a range reduction, e.g., evaluating the function f(x) = vx
for x € [0, 2).

One approach to evaluate f(x) is to approximate the function on the interval [1, 2) by a poly-
nomial. We can then perform range reduction for every input x to y := x - 2€ € [1,2), for k € IN,
evaluate the polynomial for y and then use that

fx) = Vx - 2k27K/2
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where both multiplications by powers of two can be implemented using shifts and an additional
multiplication by V2 for the k/2 exponent with an odd k. The function f(x) can thus be evaluated
on a quantum computer as follows:

1. Determine the position of the first non-zero qubit of x (starting from the most-significant bit)

2. Shift all bits of the fixed-point number such that the position is aligned with the binary point
(and the number is now in the interval [1, 2))

3. Evaluate the polynomial approximating f(x) on [1, 2) and store the result in a new quantum
register

4. On the result register, undo half of the shift and multiply by V2 for odd shifts

We know that x was shifted by k positions in step 2. Therefore, the last k qubits of x are zero
(where k is a quantum integer). These qubits can be used as work qubits when undoing half of
the shift on the result register and our assertion-based optimizer can thus save an entire quantum
fixed-point register.

More specifically, after having shifted the qubits of x toward the MSB, we have the same
entanglement description assertion as in the previous example, Aro(x, p), between the x register
and the position register. Now, the library implementation of the shift circuit should be able to use
these “free” qubits of x as scratch space when shifting the output of the polynomial evaluation
subroutine. This can be achieved through weakening of the preconditions on the work qubits of the
shift circuit that catch potential overflow: Instead of requiring 2"» — 1 qubits in |0}, it is sufficient
that the first k qubits be zero, where k is a quantum integer denoting the distance of the shift.
While this precondition can always be satisfied by allocating 2" — 1 work qubits in |0), stating the
weakened version allows the compiler to perform this optimization.

5.3 Integer Addition and Dirty Qubits

Recently, it was shown that the cost of an integer addition subroutine can be halved using the fact
that the target qubit after an uncompute Toffoli gate is back in |0) [Gidney 2018]. Using the pre-
and postconditions of allocation and deallocation, our optimization methodology can identify and
exploit this optimization opportunity.

A similar optimization can be applied for subroutines that employ so-called dirty qubits [Barenco
et al. 1995; Héner et al. 2017]. While such implementations use fewer (clean) work qubits, they
typically cause an increase in circuit depth. Thus, when compiling the program for a specific
architecture, the compiler should use as many clean qubits as possible in order to reduce this
negative effect on the runtime. Because our assertion-based optimizer is able to identify when a
dirty qubit gets mapped to a qubit that is actually clean, it can then optimize the resulting circuit.

For n-ary controlled NOT operations [Barenco et al. 1995], this translates to canceling Toffolis
that are guaranteed not to be applied because one of the control qubits is in |0) (since it is a clean
qubit). For an addition-by-constant circuit that uses dirty qubits, this translates to removing both
the controlled inversions and a controlled incrementer [Héner et al. 2017, Fig. 5]. These automatic
conversions from dirty to clean qubits allow savings of approximately 2X in the number of gates
and, crucially, allow for more modularity when implementing libraries for quantum computing.

As a technical detail, note that gates can be removed both after allocation and before deallocation:
By definition, a dirty qubit must be returned to its original state before deallocation and so the
clean qubit will have been brought back to |0).

6 IMPLEMENTATION USING PROJECTQ AND Z3

In this section, we discuss our implementation of our optimization methodology. We implement
our methodology using the ProjectQ software framework for quantum computing [Steiger et al.
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2018]. ProjectQ features an extensible compiler framework, allowing to easily integrate custom
compiler passes such as our optimization methodology.

For each quantum operation for which we would like to add nontrivial optimization capabilities
using our approach, we add the corresponding post- and triviality conditions. Additionally, precon-
ditions may be supplied which would allow to test the program for correctness. To add support for
our generalized methodology, we only require the triviality condition of the control modifier, in
addition to information which lets us determine whether a sequence of operations Uy, ..., Uy acts
as the identity. The latter is already available in ProjectQ.

We extend the definitions of several quantum gates in ProjectQ with the corresponding entangle-
ment descriptions (both post- and triviality conditions). Specifically, we add member functions that
use functionality from the Z3 Theorem Prover package [de Moura and Bjerner 2008] to express
these conditions. Our custom compiler pass uses these member functions in combination with the
Z3 solver in order to check whether certain operations are guaranteed to be trivial, in which case
they can be removed.

While we do not elaborate on the details of the ProjectQ compilation framework, we point out
that optimization and compilation is carried out during circuit generation time. As a result, all
parameters of the circuit are already known. In particular, the lengths of all quantum registers
are known since all classical inputs to the quantum program have been supplied. The circuit can
thus be optimized specifically to the problem instance in question. Furthermore, this enables more
powerful optimizations when employing our methodology because we do not require parametric
proofs. It is of course theoretically possible to prove such statements by induction, however, there
is only limited support in automatic theorem provers such as Z3 [de Moura and Bjerner 2008] due
to the difficulty of, e.g., constructing appropriate induction rules [Bundy 1999]. Since all classical
parameters have a definite value upon circuit generation, we can unroll quantified statements and
thereby generate claims that are easier to prove.

As an example, we show how the definition of the ProjectQ Swap operation was altered in order
to enable our optimization engine to carry out the optimizations discussed so far. The definition of
SwapGate was extended by merely the following two member functions:

class SwapGate(SelfInverseGate):

[...]
def trivial_if(self, x1, x2):
return (x1 == x2)

def postconditions(self, x1, x2, yl, y2):
return And(x1 == y2, x2 == y1)

Clearly, these are very minor modifications that provide exactly the information required: Post-
conditions and triviality conditions of the Swap gate. The trivial_if member function of every
gate is invoked by the optimizer with one symbolic boolean variable for each target qubit of the
gate (two in this case). The returned expression is negated and then added to the solver together
with the expression ctrls_one = And(v[lcgb;], vlcgbal, ...), which is true if and only if all
variables v[cgb;] corresponding to control qubits cgb; that are true / equal to one:

solver.push()
solver.add(And(ctrls_one, Not(cmd.gate.trivial_if(xtarget_vars))))
if solver.check() == unsat:
# skip current operation
solver.pop()
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where target_vars are the Z3 variables corresponding to the target qubits of the current gate
before it is executed. If the solver finds a solution that satisfies all previous conditions and the
negated conditions of trivial_if, the gate cannot be removed since it may have a nontrivial
effect on the state of the quantum computer |i) at that point. If there is no such solution, on the
other hand, this means that the gate is trivial and it can thus be removed from the circuit. After
this triviality check, the conditions of the Z3 solver are updated according to the postconditions of
the operation which hold irrespective of whether the gate was removed: For each target qubit, a
new boolean Z3 variable is created and the postconditions member function of the gate relates
the old variables (before applying the gate) to the new ones. In particular, operations are handled
by adding two Z3 Implies(...) statements:

(1) The control qubit(s) being all ones implies that the new target variables are now related to
the old ones via the postconditions function, i.e.,

Implies(ctrls_one, cmd.gate.postconditions(x(target_vars+
new_target_vars)))

is added to the solver, where new_target_vars are the Z3 variables that correspond to the
target qubits after applying the gate.

(2) The control qubit(s) not being all ones implies that the new target variables are equal to the
old ones, i.e., for all i we add the expression

Implies(Not(ctrls_one), new_target_vars[i] == target_vars[i]))

to the solver.

If there are no control qubits, (1) and (2) are of the form
{true = y = f(x)}and {false = y=x},

respectively and, therefore, are equivalent to stating that y = f(x) holds after the gate has been
applied, where f is given by the postconditions member function. As a technical detail, note
that the ProjectQ Swap gate derives from SelfInverseGate, stating that the Swap operation is
its own inverse. This information is useful for our generalized optimization approach, which is
employed whenever the circuit buffer size of the optimizer exceeds a user-defined threshold. When
this happens, the stored circuit is traversed in order to identify target-successive operations which
may be removed from the circuit. For each such sequence of gates, the Z3 solver is used to determine
whether there is an assignment to the control qubits that agrees with all previous postconditions
and that causes 0 < m < M operations to be executed. If there is no such assignment, either all or
none of these M operations are executed, meaning that they always act trivially. As a result, the
entire sequence of gates can be removed from the circuit.

7 RESULTS

In this section, we report the results that were obtained using our prototype implementation
of the proposed optimization methodology. We demonstrate the performance of our optimizer
using three different quantum subroutines. The first subroutine performs floating-point mantissa
renormalization, see Figs. 6 and 7, the second entangles a linear chain of qubits, see Fig. 3, and the
third performs modular reduction, see Fig. 5, which is a subroutine that is used in constructing a
modular adder.

For all subroutines, we compare two ProjectQ compiler setups—one which features a local
optimizer capable of merging/canceling subsequent operations that act on the same qubits, and
a second configuration which additionally contains our assertion-based optimizer. We choose
{CNOT, X, H, S, T, T*} as the target gate set for both configurations. In order to compare these
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Table 2. Optimizer comparison for the floating-point renormalization circuit for 8-, 16-, 32-, and 64-qubit
floating-point, where n, = 3,5, 8, 11, respectively, and the mantissa contains n — n, — 1 qubits. Our entangle-
ment description based optimizer achieves a reduction in circuit area (widthxdepth) of up to 410x.

n width depth optimized width optimized depth area reduction
8 15 235 7 107 4.7x
16 47 922 15 388 7.4%x
32 287 5538 31 1080 47.5%
64 2111 38903 62 3229 410.2x
Traditional - X - >‘<
Assertion-based —— .7
5 - >< .
10% + —
E
"g p
© w0 X ‘ - ??pth ratio i
4L i
3L 4
) ) ) 2 ) L L - \‘
'y 8 16 32 64 128

Number of qubits

Fig. 8. Optimizer comparison for the entangling circuit on n qubits depicted in Fig. 3. The assertion-based
optimizer achieves a 5X improvement in circuit depth for large n.

different configurations, we use circuit width and depth as benchmark numbers. The circuit width
corresponds to the maximal number of alive qubits at any point throughout the execution of the
circuit. The circuit depth is equal to the delay of the circuit assuming that all quantum gates in the
target gate set take unit time.

The comparisons can be found in Table 2 and Fig. 8 for the floating-point renormalization
circuit and the entangling circuit, respectively. Both cases clearly demonstrate the benefits of our
assertion-based optimizer, which is able to reduce the circuit area (width X depth) by a factor of up
to 410x and 5x for the first and second circuit, respectively.

For the floating-point renormalization circuit, our optimizer is able to eliminate 2"» — 1 ancilla
qubits in addition to several Fredkin gates. Due to the elimination of Fredkin gates, the depth
is also significantly reduced. We note that these savings are obtained without any prior manual
optimizations such as limiting the maximal shift to the number of bits in the mantissa, as this
describes a realistic scenario for software reuse.

For the entangling circuit, all CNOT gates resulting from swap operations can be removed when
using the assertion-based optimization strategy (see Example 3.5 for more details). Therefore, the
circuit depth would grow by 4(n — 2) gates for n > 2 when turning off assertion-based optimization
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(see Fig. 3). The ratio between the resulting circuit depths for n > 2 is thus
4(n—2)+n 5n — 8 nooo
— — 5

>

n n
which agrees with the experimental results in Fig. 8 and constitutes an up to 5X improvement over
state-of-the-art optimizers.

The modular reduction circuit, which is a subroutine for modular addition, is optimized by
identifying a pattern similar (but more complex) to the one shown in Fig. 4. In this case, the target
qubit is the carry qubit of the controlled subtraction and upon removing the two multi-controlled
NOT operations, no operations on the carry qubit remain. As a result, our methodology removes
this qubit from the circuit. Furthermore, our methodology achieves a slight depth reduction due to
the removal of the two generalized Toffoli gates. In Shor’s algorithm for factoring an n-bit number,
n calls to such a modular reduction are required. The total savings would thus be equal to n qubits,
where n ~ 2000 for practical applications.

8 SUMMARY AND FUTURE WORK

We have presented an optimization methodology that extends the scope of automatic circuit
optimizations. In particular, our methodology carries out high-level optimizations across subroutine
boundaries that are typically performed by humans, enabling more efficient code reuse. This is
achieved by taking into account pre-, post-, and triviality conditions of all subroutines that get
invoked by the quantum program that is being optimized.

Our generalized methodology currently performs optimizations if the overall action of a sequence
of gates is trivial. Future work could address more general cases where, e.g., control qubits are in a
state that only triggers subsets of these gates that, when combined, correspond to trivial operations.
Additionally, symbolic computation on entanglement description assertions may be incorporated.
This would allow to optimize iterative procedures such as the Newton-Raphson method which can
be used to evaluate high-level arithmetic functions on a quantum computer [Cao et al. 2013]: For
many such functions, the initial guesses can be chosen to be very simple (e.g., integer powers of two).
The first iteration of a Newton-Raphson method may then be applied symbolically to the output of
the initial guess routine. Such optimizations have been shown to yield significant resource savings
when performed manually [Haner et al. 2018a]. Automating such procedures would thus result in
the same benefits without the need for labor-intensive manual code optimization. Moreover, the
focus of the present work lies on optimizing permutation-type subroutines. Future work could
extend this to target phase-oracles by supporting pre- and postconditions in multiple bases.

ACKNOWLEDGMENTS

We thank the anonymous referees for their valuable comments and suggestions. This work was
supported by Microsoft and by the Swiss National Science Foundation through the National
Competence Center for Research NCCR QSIT.

REFERENCES

M. Amy, D. Maslov, and M. Mosca. 2014. Polynomial-Time T-Depth Optimization of Clifford+T Circuits Via Matroid
Partitioning. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 33, 10 (Oct 2014), 1476-1489.
https://doi.org/10.1109/TCAD.2014.2341953

Matthew Amy, Dmitri Maslov, Michele Mosca, and Martin Roetteler. 2013. A meet-in-the-middle algorithm for fast synthesis
of depth-optimal quantum circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 32, 6
(2013), 818-830. https://doi.org/10.1109/TCAD.2013.2244643

Ryan Babbush, Dominic W Berry, Ian D Kivlichan, Annie Y Wei, Peter J Love, and Alan Aspuru-Guzik. 2016. Exponentially
more precise quantum simulation of fermions in second quantization. New Journal of Physics 18, 3 (2016), 033032.
https://doi.org/10.1088/1367-2630/18/3/033032

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 133. Publication date: November 2020.


https://doi.org/10.1109/TCAD.2014.2341953
https://doi.org/10.1109/TCAD.2013.2244643
https://doi.org/10.1088/1367-2630/18/3/033032

Assertion-Based Optimization of Quantum Programs 133:19

Adriano Barenco, Charles H. Bennett, Richard Cleve, David P. DiVincenzo, Norman Margolus, Peter Shor, Tycho Sleator,
John A. Smolin, and Harald Weinfurter. 1995. Elementary gates for quantum computation. 52 (03 1995).

CH Bennett. 1973. Logical reversibility of computation. Maxwell’s Demon. Entropy, Information, Computing (1973), 197-204.

Alan Bundy. 1999. The automation of proof by mathematical induction. Technical Report.

Yudong Cao, Anargyros Papageorgiou, lasonas Petras, Joseph Traub, and Sabre Kais. 2013. Quantum algorithm and
circuit design solving the Poisson equation. New Journal of Physics 15, 1 (2013), 013021. http://stacks.iop.org/1367-
2630/15/i=1/a=013021

Frederic T Chong, Diana Franklin, and Margaret Martonosi. 2017. Programming languages and compiler design for realistic
quantum hardware. Nature 549, 7671 (2017), 180. https://doi.org/10.1038/nature23459

Leonardo de Moura and Nikolaj Bjgrner. 2008. Z3: An Efficient SMT Solver. In Tools and Algorithms for the Construction and
Analysis of Systems, C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 337-340.

Austin G. Fowler, Matteo Mariantoni, John M. Martinis, and Andrew N. Cleland. 2012. Surface codes: Towards practical
large-scale quantum computation. Phys. Rev. A 86 (Sep 2012), 032324. Issue 3. https://doi.org/10.1103/PhysRevA.86.032324

Craig Gidney. 2018. Halving the cost of quantum addition. Quantum 2 (June 2018), 74. https://doi.org/10.22331/q-2018-06-
18-74

Craig Gidney and Martin Ekera. 2019. How to factor 2048 bit rsa integers in 8 hours using 20 million noisy qubits. arXiv
preprint arXiv:1905.09749 (2019).

Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and Benoit Valiron. 2013. Quipper: a scalable
quantum programming language. In ACM SIGPLAN Notices, Vol. 48. ACM, 333-342. https://doi.org/10.1145/2499370.
2462177

Daniel Grofle, Xiaobo Chen, Gerhard W Dueck, and Rolf Drechsler. 2007. Exact SAT-based Toffoli network synthesis. In
Proceedings of the 17th ACM Great Lakes symposium on VLSL. ACM, 96-101.

Daniel Grofie, Robert Wille, Gerhard W Dueck, and Rolf Drechsler. 2009. Exact multiple-control toffoli network synthesis
with SAT techniques. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 28, 5 (2009), 703-715.

Lov K. Grover. 1996. A Fast Quantum Mechanical Algorithm for Database Search. In Proceedings of the Twenty-eighth
Annual ACM Symposium on Theory of Computing (Philadelphia, Pennsylvania, USA) (STOC *96). ACM, New York, NY,
USA, 212-219. https://doi.org/10.1145/237814.237866

Thomas Haener, Mathias Soeken, Martin Roetteler, and Krysta M. Svore. 2018. Quantum Circuits for Floating-Point
Arithmetic. In Reversible Computation, Jarkko Kari and Irek Ulidowski (Eds.). Springer International Publishing, Cham,
162-174. https://doi.org/10.1007/978-3-319-99498-7_11

Thomas Héner, Martin Roetteler, and Krysta M. Svore. 2017. Factoring Using 2N + 2 Qubits with Toffoli Based Modular
Multiplication. Quantum Info. Comput. 17, 7-8 (June 2017), 673-684. http://dl.acm.org/citation.cfm?id=3179553.3179560

Thomas Héner, Martin Roetteler, and Krysta M Svore. 2018a. Optimizing Quantum Circuits for Arithmetic. arXiv preprint
arXiv:1805.12445 (2018).

Thomas Héner, Damian S. Steiger, Krysta Svore, and Matthias Troyer. 2018b. A Software Methodology for Compiling
Quantum Programs. Quantum Science and Technology 3, 2 (2018), 020501. https://doi.org/10.1088/2058-9565/aaa5cc
Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. 2009. Quantum Algorithm for Linear Systems of Equations. Phys.

Rev. Lett. 103 (Oct 2009), 150502. Issue 15. https://doi.org/10.1103/PhysRevLett.103.150502

Matthew B. Hastings, Dave Wecker, Bela Bauer, and Matthias Troyer. 2015. Improving Quantum Algorithms for Quantum
Chemistry. Quantum Info. Comput. 15, 1-2 (Jan. 2015), 1-21. http://dl.acm.org/citation.cfm?id=2685188.2685189

IBM. 2018. QISKit. https://qiskit.org

Ali JavadiAbhari, Shruti Patil, Daniel Kudrow, Jeff Heckey, Alexey Lvov, Frederic T. Chong, and Margaret Martonosi. 2014.
ScaffCC: a framework for compilation and analysis of quantum computing programs. In Proceedings of the 11th ACM
Conference on Computing Frontiers. ACM, 1. https://doi.org/10.1145/2597917.2597939

N Cody Jones, James D Whitfield, Peter L McMahon, Man-Hong Yung, Rodney Van Meter, AlAan Aspuru-Guzik, and
Yoshihisa Yamamoto. 2012. Faster quantum chemistry simulation on fault-tolerant quantum computers. New Journal of
Physics 14, 11 (2012), 115023. https://doi.org/10.1088/1367-2630/14/11/115023

Julian Kelly, R Barends, AG Fowler, A Megrant, E Jeffrey, TC White, D Sank, JY Mutus, B Campbell, Yu Chen, et al. 2015.
State preservation by repetitive error detection in a superconducting quantum circuit. Nature 519, 7541 (2015), 66.

Vadym Kliuchnikov, Dmitri Maslov, and Michele Mosca. 2013. Fast and efficient exact synthesis of single qubit unitaries
generated by Clifford and T gates. Quantum Information & Computation 13, 7-8 (June 2013), 0607-0630. arXiv:1206.5236

Samuel A Kutin. 2006. Shor’s algorithm on a nearest-neighbor machine. arXiv preprint quant-ph/0609001 (2006).

Samuel A Kutin, David Petrie Moulton, and Lawren M Smithline. 2007. Computation at a distance. arXiv preprint quant-
ph/0701194 (2007).

Giulia Meuli, Mathias Soeken, and Giovanni De Micheli. 2018. SAT-based {CNOT, T} Quantum Circuit Synthesis. In
International Conference on Reversible Computation. Springer, 175-188.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 133. Publication date: November 2020.


http://stacks.iop.org/1367-2630/15/i=1/a=013021
http://stacks.iop.org/1367-2630/15/i=1/a=013021
https://doi.org/10.1038/nature23459
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.22331/q-2018-06-18-74
https://doi.org/10.22331/q-2018-06-18-74
https://doi.org/10.1145/2499370.2462177
https://doi.org/10.1145/2499370.2462177
https://doi.org/10.1145/237814.237866
https://doi.org/10.1007/978-3-319-99498-7_11
http://dl.acm.org/citation.cfm?id=3179553.3179560
https://doi.org/10.1088/2058-9565/aaa5cc
https://doi.org/10.1103/PhysRevLett.103.150502
http://dl.acm.org/citation.cfm?id=2685188.2685189
https://qiskit.org
https://doi.org/10.1145/2597917.2597939
https://doi.org/10.1088/1367-2630/14/11/115023
https://arxiv.org/abs/1206.5236

133:20 Thomas Haner, Torsten Hoefler, and Matthias Troyer

Yunseong Nam, Neil ] Ross, Yuan Su, Andrew M Childs, and Dmitri Maslov. 2018. Automated optimization of large quantum
circuits with continuous parameters. npj Quantum Information 4, 1 (2018), 23. https://doi.org/10.1038/s41534-018-0072-4

Michael A Nielsen and Isaac Chuang. 2010. Quantum computation and quantum information.

Jennifer Paykin, Robert Rand, and Steve Zdancewic. 2017. QWIRE: a core language for quantum circuits. ACM SIGPLAN
Notices 52, 1 (2017), 846—-858. https://doi.org/10.1145/3093333.3009894

Markus Reiher, Nathan Wiebe, Krysta M. Svore, Dave Wecker, and Matthias Troyer. 2017. Elucidating reaction mechanisms
on quantum computers. Proceedings of the National Academy of Sciences 114, 29 (2017), 7555-7560. https://doi.org/10.
1073/pnas.1619152114 arXiv:https://www.pnas.org/content/114/29/7555 full.pdf

Peter W Shor. 1994. Algorithms for quantum computation: Discrete logarithms and factoring. In Foundations of Computer
Science, 1994 Proceedings., 35th Annual Symposium on. IEEE, 124-134. https://doi.org/10.1109/SFCS.1994.365700

Robert S. Smith, Michael J. Curtis, and William J. Zeng. 2016. A Practical Quantum Instruction Set Architecture. arXiv
preprint arXiv:1608.03355 (2016).

Damian S. Steiger, Thomas Héner, and Matthias Troyer. 2018. ProjectQ: an open source software framework for quantum
computing. Quantum 2 (2018), 49. https://doi.org/10.22331/q-2018-01-31-49

Krysta Svore, Alan Geller, Matthias Troyer, John Azariah, Christopher Granade, Bettina Heim, Vadym Kliuchnikov, Mariia
Mykhailova, Andres Paz, and Martin Roetteler. 2018. Q#: Enabling Scalable Quantum Computing and Development
with a High-level DSL. In Proceedings of the Real World Domain Specific Languages Workshop 2018 (Vienna, Austria)
(RWDSL2018). ACM, New York, NY, USA, Article 7, 10 pages. https://doi.org/10.1145/3183895.3183901

Yasuhiro Takahashi, Seiichiro Tani, and Noboru Kunihiro. 2010. Quantum Addition Circuits and Unbounded Fan-out.
Quantum Info. Comput. 10, 9 (Sept. 2010), 872-890. http://dl.acm.org/citation.cfm?id=2011464.2011476

Mingsheng Ying. 2012. Floyd-hoare Logic for Quantum Programs. ACM Trans. Program. Lang. Syst. 33, 6, Article 19 (Jan.
2012), 49 pages. https://doi.org/10.1145/2049706.2049708

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 133. Publication date: November 2020.


https://doi.org/10.1038/s41534-018-0072-4
https://doi.org/10.1145/3093333.3009894
https://doi.org/10.1073/pnas.1619152114
https://doi.org/10.1073/pnas.1619152114
https://arxiv.org/abs/https://www.pnas.org/content/114/29/7555.full.pdf
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.22331/q-2018-01-31-49
https://doi.org/10.1145/3183895.3183901
http://dl.acm.org/citation.cfm?id=2011464.2011476
https://doi.org/10.1145/2049706.2049708

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Qubits and Gates
	2.2 Quantum Programs

	3 Quantum program optimization using assertions
	3.1 Entanglement Description Assertions for Quantum Program Optimization
	3.2 Correctness of Our Methodology

	4 Formalization and Generalization
	4.1 Formalization of Our Basic Methodology
	4.2 Generalized Optimization Methodology

	5 Practical examples
	5.1 Floating-Point Arithmetic Subroutine
	5.2 Fixed-Point Arithmetic Subroutine
	5.3 Integer Addition and Dirty Qubits

	6 Implementation using ProjectQ and Z3
	7 Results
	8 Summary and future work
	Acknowledgments
	References

