Ownership Passing: Efficient Distributed
Memory Programming on Multi-core Systems

Andrew Friedley

Indiana University
Bloomington, IN

afriedle@indiana.edu

Andrew Lumsdaine

Indiana University
Bloomington, IN

lums@indiana.edu

Abstract

The number of cores in multi- and many-core high-performance
processors is steadily increasing. MPI, the de-facto standard for
programming high-performance computing systems offers a dis-
tributed memory programming model. MPI’s semantics force a
copy from one process’ send buffer to another process’ receive
buffer. This makes it difficult to achieve the same performance
on modern hardware than shared memory programs which are ar-
guably harder to maintain and debug. We propose generalizing
MPI’s communication model to include ownership passing, which
make it possible to fully leverage the shared memory hardware of
multi- and many-core CPUs to stream communicated data concur-
rently with the receiver’s computations on it. The benefits and sim-
plicity of message passing are retained by extending MPI with calls
to send (pass) ownership of memory regions, instead of their con-
tents, between processes. Ownership passing is achieved with a hy-
brid MPI implementation that runs MPI processes as threads and is
mostly transparent to the user. We propose an API and a static anal-
ysis technique to transform legacy MPI codes automatically and
transparently to the programmer, demonstrating that this scheme is
easy to use in practice. Using the ownership passing technique, we
see up to 51% communication speedups over a standard message
passing implementation on state-of-the art multicore systems. Our
analysis and interface will lay the groundwork for future develop-
ment of MPI-aware optimizing compilers and multi-core specific
optimizations, which will be key for success in current and next-
generation computing platforms.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming

Keywords Ownership Passing; Distributed Memory; Shared Mem-
ory; Message Passing; Multi-core

1. Introduction and Motivation

The most commonly used programming model for large-scale par-
allel applications is the Message Passing Interface (MPI [13]). This
model generally assumes a one-dimensional distribution of P pro-
cesses, where each process has its own (private) memory space and
data is solely exchanged through explicit messages.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PPOPP ’13 February 23-27, Shenzhen, China
Copyright © 2013 ACM 978-1-4503-1922/13/02...$10.00

Torsten Hoefler

ETH Zurich
Zurich, Switzerland

htor@inf.ethz.ch

Greg Bronevetsky

Lawrence Livermore National
Laboratory
Livermore, CA

bronevetsky@lIInl.gov

Ching-Chen Ma

Rose-Hulman Institute of Technology
Terre Haute, IN

mac@rose-hulman.edu

The message passing style of programming enables easy ab-
straction and code composition. Its shared nothing semantics
and the SPMD programming simplify reasoning about the pro-
gram’s state and avoid complex problems that are often encoun-
tered in shared memory programming models [10]. Composition
is achieved through communication contexts (called communica-
tors in MPI) that enable multiple parallel libraries or objects to be
combined into a single program without interference [8]. Those
features have made MPI the predominant programming model for
parallel scientific applications. However, this abstraction comes at
a cost: all message transmissions have copy semantics, that is, the
implementation requires a single copy from a buffer at the source
process to a buffer at the destination process. Typical MPI libraries
even require more copies, either through intermediate shared mem-
ory buffers or for the serialization and deserialization of complex
data structures.

All modern parallel computing systems consist of network
nodes with multiple processing elements (or cores). Processing
elements (PEs) on a single node commonly have access to a cache-
coherent hardware shared memory system. MPI was originally
designed for distributed memory computers with either single-core
or small SMP nodes. On today’s architectures, the current copy-
based message-passing model is suboptimal in terms of memory
(send and receive buffers), energy (data movement consumes most
energy [2]), and time (busses are used twice which reduces perfor-
mance). To avoid those issues, many software developers switched
to hybrid programming techniques, combining MPI for inter-node
communication with shared memory programming models such
as OpenMP [20] for intra-node communication. However, achiev-
ing the same level of performance is a tedious and complex task
and often requires major code restructuring to work in the shared
memory world [21].

14000

12000
’g /
£ 10000
E il A L
£ 8000 g
£
g 6000
©
S 4000
m

2000 /" —Ownership Passing

et Message Passing -~

X
-

Message Size (bytes)

Figure 1: Bandwidth of Ownership Passing vs. Message Passing.

In this work, we use an ownership passing technique to easily
and safely transform message-passing parallel applications to uti-
lize shared memory hardware more efficiently. Instead of re-writing
existing applications, we simply change them to pass a pointer from
the sender to the receiver instead of copying the data. In fact, the
production and consumption of buffers in our system automatically
aligns in a pipelined fashion so that both stages can overlap.

As a motivating example, we show the effective bandwidth
when passing a memory buffer instead of copying its contents on a
modern HPC architecture in Figure 1. The measurement was done
with the well-known NetPIPE [23] ping-pong benchmark on the
Cab system (described later). To ensure fair comparison we ex-
tended NetPIPE to read the received data, thus accounting for the
cost of transferring the data using ownership passing. We see that
the standard copy approach is limited by the memory copy band-
width and synchronization costs while ownership passing essen-
tially requires only synchronization and reading from (potentially
remote) memory. Thus, ownership passing is usually significantly
faster than standard message passing on today’s multicore systems.

Our approach is true zero-copy (zero-touch, in fact) because the
buffer contents are neither read nor written during the communi-
cation. We develop a novel memory pooling technique to re-use
communication buffers and avoid synchronization.

The main contributions of this work are:

e We design an interface for ownership passing that is compatible
with MPI and allows for easy porting from MPI codes.

e We propose a static analysis technique to transform codes auto-
matically to use ownership passing.

e We analyze the performance of ownership passing in realistic
environments.

e We demonstrate practical results of important HPC micro-
applications and application kernels that have been improved
with our technique.

In the next section, we describe our Hybrid MPI implementation
that spawns MPI processes as threads, creating the shared address
space necessary for ownership passing. Section 3 describes the
ownership passing technique and introduces our Ownership Pass-
ing Interface (OPI) library and API. We describe and give examples
for applying ownership passing to point-to-point message passing
codes in Section 3.3 and collective communication in Section 3.5.
We propose a technique for automatically transforming parallel
codes to ownership passing in Section 4. Finally, Section 5 pro-
vides a performance analysis of ownership passing using a micro-
benchmark and several applications.

2. Hybrid MPI—A Threaded MPI
Implementation

Before any shared memory communication can be introduced
alongside MPI, processes need a method to directly access each
others’ memory. We use a thread-based MPI approach [16, 22]
which replaces the common process-based rank design with a
thread-based design (i.e., an MPI process is a thread). All MPI
processes (threads) on a node are grouped into one operating sys-
tem process'. Hereafter, we use the term rank to refer to an MPI
process as defined by the MPI standard, which may be an operating
system process or thread depending on the MPI implementation.
We use the terms process and thread as defined in the context of
the operating system.

The benefit of a thread-based MPI implementation is
portability—no additional support is required from the operating

! The term “MPI Process” is abstractly defined in the MPI standard and does
not necessarily mean operating system process.

system. However, the application must be made thread-safe due to
sharing of a single address space (global variables become shared
by all MPI ranks). Solutions exist to perform privatization of global
variables automatically [14, 16], minimizing the required developer
effort. Such thread-based hybridization approaches are indeed used
routinely in practice, for example in CHARM++’s AMPI [14].

We have developed a portable library called Hybrid MPI
(HMPYI) that implements the thread-based rank design on top of any
standard MPI library. HMPI intercepts messages destined for ranks
within the same node and uses a faster single memory copy com-
munication path (MPI often performs two copies via shared mem-
ory segments), while utilizing an existing MPI for inter-node com-
munication. Although we use HMPI in this paper to demonstrate
results, our proposed ownership passing optimization would work
with any thread-based MPI library or other scheme enabling direct
memory access between MPI processes, such as XPMEM [25].

3. Ownership Passing

MPP’s distributed memory design ensures that only one rank can
access a buffer (any arbitrary memory region). That is, exactly
one rank owns a buffer, and that is the only rank that may read
or write that buffer. Using a shared memory technique with MPI
(explained in Section 2), ownership can be passed from one rank to
another via message passing. When a rank gives away ownership of
a buffer, that rank can no longer access that buffer. Likewise, taking
ownership of a buffer enables exclusive read and write access.

Ownership passing reinterprets the concept of distributed mem-
ory in a way that retains its simplicity while taking advantage of
shared memory hardware. Traditional distributed memory parti-
tions the application’s address space into static private memory
blocks. In contrast, ownership passing allows this partition to be
dynamic, with memory regions moving from one private space
to another while maintaining the invariant that each memory re-
gion is privately owned by exactly one thread of execution. The
resulting flexibility makes it possible for message passing applica-
tions to utilize shared memory hardware in ways similar to native
shared memory applications but without concern about data races
and other complications of the shared memory model. Not only is
our approach beneficial on cache-coherent architectures (e.g., com-
modity x86), it also works on non-cache-coherent and non-uniform
memory architectures (NUMAs).

3.1 Ownership Passing Programming Interface

Transferring ownership of a buffer only requires sending a pointer
instead of the entire message data. When the new owner of a buffer
begins reading the message from its original location, the shared
memory hardware will begin to stream data from the sender rank’s
cache and/or memory to the receiver. Standard architectural CPU
features such as snoop caches and memory prefetching improve
the performance and enable efficient communication/computation
overlap in hardware. Since the communication library never ac-
cesses the buffer data, true zero-copy communication is achieved.

We define a small extension API, referred to as the Ownership
Passing Interface (OPI), to simplify the use of ownership passing
in applications. The C interface is shown in Figure 2 and Figure 3
shows a MPI simple example and its OPI counterpart. All routines
are thread-safe with respect to one another.

OPI_Alloc and OPI_Free allocate and deallocate new commu-
nication buffers, calling malloc and free and performing addi-
tional management of buffer memory pools, as described in Sec-
tion 3.2. Ownership passing is performed using the OPI_Give
and OPI_Take routines, which are analogous to MPI_Send and
MPI_Recv (nonblocking versions are also available in analogy to
nonblocking MPI calls). 0PI_Give consumes the provided buffer.
If the destination rank is in the same address space (on the same

Allocate a communication
buffer of some length.

OPI_Alloc(void** ptr,
size_t length)

Release a buffer allocated
by OPI_Alloc.

OPI_Free(void** ptr)

OPI_Igive(void** ptr, int count,
MPI Datatype datatype,
int rank, int tag,
MPI_Comm comm, MPI_Request req)

Pass ownership of a buffer
to another MPI rank.

OPI_Itake(void** ptr, int count, Receive ownership of a
MPI_Datatype datatype, buffer from another MPI
int rank, int tag, rank.

MPI_Comm comm, MPI_Request req)

Figure 2: Nonblocking Ownership Passing Interface (OPI).

MPI Code OPI Code
double buf]...]; double* buf;
if(rank==0) if(rank==0) {

MPI_Send(buf, 1, ...) buf=0OPI_Alloc(...);
OPI_Give(&buf, ...);

} else if(rank==1) {
OPI_Take(&buf, ...);
OPI_Free(&buf);

else if(rank==1)
MPI_Recv(buf, 0, ...)

Figure 3: Example of MPI to OPI conversion

node), then the source rank synchronizes with the destination and
passes the buffer. If the destination is in a different address space,
then the source rank invokes a normal MPI_Send call with the given
arguments and returns the buffer to the buffer pool after the send
completes. OPI_Take returns a new buffer to the receiver. If the
buffer comes from a rank in the same address space, then it will
simply return the pointer to the buffer. If the source is a rank from
a different address space then it allocates memory of the required
size, invokes MPI_Recv on this buffer, and returns the buffer upon
completion of the remote receive. Figure 4 depicts the ownership
passing mechanism, flow control, and buffers.

e S Y
MPI MpI_Send-.. NIPI2Recv
Return Return 3“\ = /
X . | ‘ 6 {
sender receiver| Y Pool B4
HMPI Pool pogi poo h Pool 2 : \
OPI_AIIOE\‘I Y, L e 0PI Take (*J\PI_AIIoc“I *\OPI_Take/'
OP|_Give(| OPI_Free OP_Give($)|[| "OPI_Fre¢

L e J L J

Y Y
On-Node Communication Off-Node Communication
==P Network communication

—> On-node transfer of buffer pointer

= —» Transfer of buffer to/from buffer pool

Figure 4: Flow of Control and Buffers in Ownership Passing.

Note that OPI_Alloc and OPI_Take introduce new buffers,
while OPI_Give and OPI_Free relinquish ownership of a buffer.
For safety and to promote the ownership concept, the latter two
routines clear the provided pointer to NULL before returning.

3.2 Communication Buffer Management

Once a rank has taken ownership of a buffer and consumed its
contents, that buffer must be disposed of. We could simply free
the buffer back to the heap, but this is not ideal. Malloc and free
must be implemented in a thread-safe manner, which in our case
implies a lock shared between all ranks on a node. Furthermore
malloc and free are costly library calls, and ownership passing
encourages allocating a new buffer for every message sent.

We can alleviate the costs of malloc and free by caching
buffers in a memory pool. When allocating, we search the pool for
the first buffer large enough for the requested size and reuse it. If

no such buffer exists, a new one is allocated. When freeing a buffer,
we return it to a memory pool instead of the heap.

Using one memory pool per node would require a lock shared
between all ranks on a node, which is not an improvement over
using the heap. Instead, we maintain one memory pool per rank.
Now, a choice must be made—buffers can be returned to either the
sender’s or the receiver’s memory pool. Returning buffers to the
sender’s pool requires a lock, since multiple ranks may simultane-
ously return a buffer to the pool, perhaps also while the sender is al-
locating. However, this approach distributes contention over many
locks rather than one, yielding an improvement.

On the other hand, no lock is required if we return buffers to
the receiver’s local pool—each rank only accesses its own memory
pool. However if one rank receives more messages than others,
buffers accumulate in one memory pool and never get reused,
wasting memory. To solve this problem, we introduce a check when
a buffer is added to a memory pool. If the number of unused buffers
exceeds a threshold, some buffers are freed back the heap. This
memory will eventually be reused in later malloc calls, potentially
on other ranks.

To evaluate the performance of these different buffer man-
agement schemes, we measure the time to perform the code
“OPI_Free(OPI_Alloc(8))” (8 byte buffer size), averaged over
5,000 runs. The results, shown in Figure 5 demonstrate that return-
ing buffers to the receiver’s pool has the lowest cost—this solution
has no synchronization between ranks, and reduces the frequency
of expensive malloc and free calls. We use this scheme for all
experimental results shown later in the paper.

@ 450

g 400 391

o 350

g 300

3 250 235

o 200

2 150

Q

g 100 S

x -

o

s 0 .
Malloc Sender Receiver

Free Pool Pool

Figure 5: Average time of the different buffer management schemes
to allocate and free eight bytes.

3.3 Point to Point Ownership Passing

Transforming an application to use ownership passing consists of
three steps:

1. Replace MPI_Send and MPI_Recv and related communica-
tion functions with OPI_Give and OPI_Take, respectively. OPI
makes this trivial; except for the additional referencing in the
first argument (buffer pointers) OPI_Give and OPI_Take accept
the same arguments as MPI_Send and MPI_Recv.

2. Insert a call to OPI_Alloc before packing a communication
buffer for sending. Since giving away ownership consumes the
communication buffer, a new one must be allocated every time
a message is sent.

3. Insert a call to OPI_Free after receiving and unpacking a com-
munication buffer. Since taking ownership produces a new
communication buffer, every received message must be freed.

Although communication buffers can be allocated at any time
before they are packed and can be freed any time after they are
unpacked, the best buffer reuse is achieved by allocating send
buffers as ‘late’ as possible in the application (immediately before
they’re packed), and freeing received buffers as ‘early’ as possible
(immediately after they’re unpacked).

To illustrate the changes needed to perform ownership passing
with MPI, we present a two-dimensional molecular dynamics (MD)
example, where space is divided into regions and each processor
is responsible for computing forces on and positions of particles
within its region. Particles on the boundary of each processor’s
region are communicated to processors responsible for adjacent
space regions. Figure 6(a) shows how this is performed using MPI
for a single boundary exchange (the same is done with other neigh-
bors). Boundary particles are serialized into a buffer, which is then
sent via MPI (copied) and deserialized on the receiver. Ownership
passing, shown in Figure 6(b), speeds up the process by replacing
the MPI copy with a transfer of ownership of the packed buffer.

Serialize
_______ Ho--7--
. o o °
Communicate 4| ,
(copy) ! .
' e
——————— P A |
Deserialize
(a) MPI
Serialize

Deserialize

Pass Ownership
(b) Ownership Passing

Figure 6: Molecular dynamics overlap communication. The bound-
ary particles must be serialized into contiguous buffers.

Figure 7 presents pseudo-code for the MPI and the ownership
passing implementation. The skeleton and code flow (computation
of the directions and the computations) are identical in both codes.
The ownership passing version allocates a buffer from the local
memory pool just before packing, regardless of whether the desti-
nation is local or remote. Ownership is passed if the neighbor rank
is local; otherwise the message is passed as would normally be done
with negligible overheads. After unpacking, the received buffer is
returned to the receiver’s memory pool.

3.4 MPI Datatypes

MPI datatypes allow strided sequences of elements or arbitrary
memory layouts to be sent and received. The ownership pass-
ing principle can be adapted to communication of disjoint sets
of elements. Since MPI datatypes must be specified at both the
sender and the receiver, ownership to the elements specified by the
datatype can be easily transferred as long as the datatypes on both
sides have the same memory layout. In cases where the receiver
only consumes part of a buffer or when the sender wishes to reuse
the data after passing ownership, the receiver can pass ownership
back. Such an approach is analagous to protecting access to the
buffer with a mutex. Compiler support for this technique is part of
our future work. MPI also allows applications to provide different
datatypes on the sender and receiver that place data in memory in
different orders (e.g. matrix row on the sender and matrix column
on the receiver). Copying is required to support this use-case and is
the most efficient way to provide this specialized functionality.

3.5 Collective Ownership Passing

Although this paper specifically focuses on ownership passing for
point-to-point communication, it can also be used effectively for
collective communication. Here, we discuss how ownership pass-
ing can be used to implement scatter, gather, and all-to-all. Further

MPI

pack_particle_buffer (send_buffer, particle_data);

MPI_Isend (send_buffer , count, datatype,
neighbor_rank , TAG, MPLCOMM_WORLD, &reqs[0]);

MPI_Irecv(&recv_buffer , count, datatype,
neighbor_rank , TAG, MPLCOMM_WORLD, &reqs[1]);

MPI_Waitall (2, reqs , MPI.STATUSES_.IGNORE);

unpack_particle_buffer(recv_buffer, particle_-data);

Ownership Passing

OPI_Alloc(&send_buffer, max_particles);
pack_particle_buffer (send_buffer, particle_data);
//Pass ownership of our send buffer.
OPI_Igive(&send_buffer, count, datatype,
neighbor_rank , TAG, MPLCOMM.WORLD, &reqs[0]);
//Take ownership of a new receive buffer.
OPI_Itake(&recv_buffer , count, datatype,
neighbor_rank , TAG, MPLCOMM.WORLD, &reqs|[1]);
MPI_Waitall (2, reqs, MPI.STATUSES_IGNORE);

unpack_particle_buffer(recv_buffer, particle_data);

//Always return the receive buffer.
OPI_Free(&recv_buffer);

Figure 7: Boundary exchange communication between a pair of
neighbors.

techniques are possible, such as allowing read access for multiple
ranks, though are not the focus of this paper.

First, consider the MPI scatter operation in which applications
allocate and pack into one send buffer, with respective portions
to be scattered to each rank. Ownership of this buffer can be
passed to the receive ranks as a collective, but this approach raises
the question of which rank should release the buffer, and when.
Synchronization (e.g. a barrier) is required to solve this problem,
but negates the performance benefits of ownership passing.

MPI Scatter Pass Ownership

(copy) Il Rank 2 B -+l Rank 2
. Rank 3

Rank 1 Rank 1

B Rank 4
. Rank 5

(a) MPI (b) Ownership Passing

Figure 8: Scatter collective communication. MPI copies out of one
buffer, while ownership passing gives separate buffers to each rank.

A better solution is to allocate a separate buffer for each desti-
nation rank, as illustrated in Figure 8. OPI_Igive is used to pass
ownership of each buffer to its respective rank. Each receiver can
then return its buffer to the sender’s memory pool without a global
synchronization.

Figure 9 demonstrates ownership passing for scatter communi-
cation in code form. Note that we have used point-to-point com-
munication, although ownership could also be transferred using an
MPI_Scatter routine or OPI equivalent. Gather operations are per-
formed in a similar manner to scatter; the root rank gathers an ar-
ray of buffer pointers to take ownership. When finished with the
data, the root can release each buffer back to the respective mem-
ory pools. An ownership passing all-to-all can be constructed by

combining scatter and gather. This work focuses on point-to-point
ownership passing; more advanced collective techniques for collec-
tive ownership passing will be investigated in the future.

if (my_rank == root) {
for(int i = 0; i < mpi-size; i++) {
//Allocate a buffer and pack data for rank i
OPI_Alloc(&buffer, buffer_size);
pack_buffer (buffer, i);

//Pass ownership of the buffer.
OPI_Igive(&buffer, count, datatype,
i, TAG, shared-mem.comm, &reqs[i]);
}

}

OPI_Itake(&buffer, count, datatype,
root , TAG, shared-mem_comm, &recv_req);

// Wait to take ownership or receive from the root.
MPI_Wait(&recv_req , MPI.STATUS_.IGNORE);

unpack_buffer(buffer);

//Always return the buffer to where it came from.
OPI_Free(&buffer);

// Complete the send requests.
MPI_Waitall (mpi_size , reqs, MPISTATUSES_.IGNORE);

Figure 9: Ownership passing in scatter collective communication.

4. Compiler Analysis

To simplify the deployment of OPI in legacy applications, we
have designed a novel compiler analysis. Our analysis detects code
patterns to which OPI is applicable and automatically transforms
the code to use the OPI extensions. We have implemented our
analysis using the ROSE framework [19], although several analyses
we depend on are not yet available in ROSE. Our implementation
functions on simple codes and will support complex codes when
the analyses we depend on are available in ROSE.

We examined the NAS Parallel Benchmarks (NPB) for appli-
cability of OPIL. Almost all point-to-point communication fits the
OPI pattern and can be converted by our analysis. The excep-
tion is CG’s row reduction, which reads the send buffer imme-
diately after MPI_Send. Many NPB codes communicate different
non-overlapping regions of the same buffer, requiring an analysis
that identifies these regions and presents them to our analysis as
separate buffers. BT uses pointer-based data structures that require
a simple points-to analysis to disambiguate.

Our analysis works in two phases. First, it analyzes the code
around each MPI_Send, MPI_Recv and related calls via a back-
wards data flow analysis to determine if the application accesses
each buffer used in these operations in a way that is compatible
with ownership passing. Then, assocations between MPI_Send and
MPI Recv operations are made using either previously published
analyses [3] or user annotations. If a given operation and all of its
possible assocated operations are OPI-Compatible, we use a second
forward analysis to identify the points where OPI operations need
to be inserted and original operations need to be removed. Since
each MPI send must match at least one MPI receive, every given
buffer must be taken by its receiver.

4.1 OQutline of Analyses and Transformations

The sender transformation is illustrated in Figure 10. The left graph
describes the pattern of operations that may be performed on an
OPI-compatible buffer as a control flow graph and the left code ex-
ample provides an example of matching code. The right graph and

code example describe how such code is transformed, with dashed
arrows identifying locations in the original code where the new op-
erations or replacements are inserted. The graphs correspond to just
the operations that refer to a single buffer and may be interleaved
with operations that refer to other memory regions. After a buffer is
allocated (e.g., static buffer declaration or dynamic malloc or new)
the application must pack and send that buffer zero or more times
before it is deallocated (e.g., scope exit of static buffer or dynamic
free or delete). During packing, the application must overwrite
the buffer without reading its prior contents; reads are allowed as
long as they are preceded by a write to the same location. The
buffer is sent via MPI_Send or an equivalent function. Code that
follows this pattern is transformed as follows: (i) the buffer’s allo-
cation is replaced with an assignment to a uniquely named integer
that stores the buffer’s size, (ii) OPI_Alloc is inserted at CFG loca-
tions where control transitions from Allocate or Send to Pack and
takes the buffer’s size variable as input, (iii) MPI_Send is replaced
with OPI_Give, and (iv) the buffer’s deallocation is removed.

Original ;l ;l Ownership Passin
int* sbuf = malloc(...) | Allocate I:-----_ Sstit;;e int sbuf_size = ..
while(...) { ~ while(...) {
for(...) sbuf[i] = ... N sbuf =
OPI_Alloc(sbuf_size)
MPI_Send(sbuf, .. for(...) sbuffi] = ...

}
free(sbuf);

OPI_Give(sbuf, ...)

Deallocate |‘

Figure 10: Sender code pattern and transformation

Ownership Passing

int* rbuf

while(...) {
rbuf=0PI_Take(...)

Original

Allocate

Receive

int* rbuf = malloc(...)
while(...) {
MPI_Recv(rbuf, ...)

for(...) ... = rbuf[i] for(...) ... = rbuf[i]

}

free(rbuf) Deallocate 1= OPI_Free

- e

Figure 11: Receiver code pattern and transformation

OPI_Free(rbuf)

Figure 11 illustrates the receiver transformation. After a buffer
is allocated, the application must receive and unpack it zero or
more times before it is deallocated. The buffer’s data is received via
MPI_Recv or an equivalent function, which overwrites its contents.
During unpacking the application may read from or write to the
portions of the buffer overwritten by MPI_Recv. Matching code is
transformed as follows: (i) the buffer’s allocation is removed, (ii)
MPI_Recv is replaced by OPI_Give, the return value of which is
assigned to the buffer’s pointer, (iii) OPI_Free is placed at CFG
locations where control transitions from Unpack to Receive or
Deallocate, and (iv) the buffer’s deallocation is removed.

Both analyses operate by maintaining at each location in the ap-
plication’s control flow graph (CFG) a mapping from live memory
regions to one of the states of a finite automaton that captures the
patterns shown in Figures 10 and 11. The backward analysis also
includes state Fail, indicating that the buffer’s use does not fit the
OPI pattern. This mapping can use information from any alias or
points-to analysis [1] that indicates whether the buffers referred to
by two pointers are always-same (must-equal) or never-same (not
may-equal). If at any CFG node there exist two buffers that are

not always-same or never-same (e.g., one pointer refers to different
buffers in different executions), their state is set to Fail. This con-
servatively handles cases where one portion of the OPI sender or
receiver pattern holds for a given buffer and another portion holds
for a different buffer (e.g., one buffer is packed but another is sent
but in both cases the same pointer variable is used).

4.2 Pattern detection analyses

Figures 12 and 14 present the transfer and meet functions used
by the backwards analyses that determine whether sender and re-
ceiver code fits the OPI pattern. Transfer functions are shown as
finite automata where nodes correspond to the possible states of a
buffer during the analysis and edges indicate how these states are
transferred through operations. Each edge represents an operation
relevant to the analysis. When the buffer is in the edge’s source
state and an operation is encountered, the buffer’s transitions to
the edge’s destination state. Snd and Rcv edges denote MPI_Send
and MPI_Recv of the buffer, respectively (or equivalent operation).
Allocate and Deallocate correspond to the buffer’s allocation and
deallocation points. R identifies buffer reads and W buffer writes.

Transfer Function

—
Dealljocate Transformable

R, W End Allocate Start

ClosedPack

OpenPack

R, Snd, ClosedW
OpenW Snd

Allocate

R, OpenW
I EorCP
R, OpenW, ClosedW L——"TAllocate

Meet Function

End

Fail OpenPack

EorCP OpenPack ClosedPack

EorCP Fail EorCP EorCP

Figure 12: Sender pattern detection backward analysis

Our analysis relies on an external array region analysis to indi-
cate if the buffers adhere to the following required properties:

1. In the sender code pattern, all reads in the Pack must be pre-
ceded by prior writes to the same buffer location (i.e., reads
cannot be upwardly-exposed), which includes the reads from
MPI_Send.

2. In the receiver pattern, the Unpack code can only read the sub-
region of a buffer that was overwritten by the prior MPI_Recv.

This information is represented by replacing R and W with more
focused operations. In the sender transfer function, OpenW in-
dicates a write that is followed by some upwardly-exposed reads
along the path between the write and the following MPI_Send (in-
cluding the reads by MPI_Send. ClosedW denotes a write not fol-
lowed by such reads. In the receiver transfer function, InR and InW
denote a read or write to a buffer region overwritten by the prior
MPI Recv (in-buffer) and OutR and OutW indicate a read and
write to a region not overwritten by the MPI_Recv (out-of-buffer).
Since the pattern detection analyses work backwards through
the application’s CFG, they begin to consider a given buffer at the
point immediately before its deallocation in state End. The sender
analysis transitions from End to OpenPack if it observes a send
operation, to Send if it observes Allocate and to Fail if it observes

reads or writes after the final send. Once in OpenPack, the analysis
stays in this state until it observes a ClosedW operation. Whan
that occurs, it transitions to ClosedPack, indicating that the code
region between this code location and the next send is well-formed
and has no upwardly-exposed reads. It returns from ClosedPack to
OpenPack on any R or OpenW operations. If the analysis observes
a Snd while in OpenPack state it transitions to Fail since the
pack code between two adjacent sends is not well-formed. Snds
observed while in ClosedPack state fit the OPI pattern and return
the analysis to the OpenPack state. Finally, if Allocate is observed
while in ClosedPack state, the analysis transitions to the Start
state, indicating that the buffer’s use fits the OPI pattern. If Allocate
is observed in other states, the analysis transitions to Fail.

The meet function takes as input two states from two different
control-flow paths that converge at a given CFG node and outputs
the state at this meet point. It is a table with the input states
on the horizontal and vertical axes and the output state at their
intersection. The Fail state is omitted since the meet of any state
with Fail is Fail. The meet of any state with itself is itself. The first
property of the meet function is that the meet of OpenPack with
either OpenPack or ClosedPack is OpenPack since this means
that the meet point is followed by upwardly-exposed reads. Further,
the meet of End with ClosedPack produces a new state EorCP,
which captures the fact that a buffer fits the OPI pattern if it is either
communicated according to the pattern or not communicated at all.
On Allocate operations EorCP transitions to Start, indicating the
buffer’s use fits the OPI pattern.

Figure 13 shows an example of the sender analysis operating
on two code examples. The left example has two statically distinct
buffers, one of which follows the OPI pattern and one that does not.
This example shows how the analysis state evolves to conclude that
buf1 fits the pattern. Starting at the deallocation of buf1 and buf2
it proceeds backwards around the while loop (steps 2, 3 and 4) to
reach state ClosedPack for buf1 (the buffer is fully packed before
being sent) and OpenPack for buf2 (the buffer is sent without
being packed). At the loop’s entry (step 5) the states evolve to
EorCP for buf1l (it is either packed/sent correctly or not used)
and Fail for buf2 (its communication in the loop doesn’t follow
the OPI pattern). At the end buf1 transitions from EorCP to Start
at its allocation site, indicating that it fully fits the OPI pattern,
while buf2 remains at Fail, indicating that it does not. In the code
example on the right, the identity of the buffer pointed to by p is not
statically unique. As discussed in the last paragraph of Section 4.1
if there exists ambiguity about the identity of buffers involved in
OPI operations (reads, writes, sends, receives) their state is set to
Fail. This is done at the MPI_Send operation where the referent of
p is either buf1 or buf2 but it is statically not known which one.

Example Evolution of Sender-Side Pattern Detection Analysis
Definitely Different Buffers

W Start
bufl=malloc(...)
buf2=malloc(...)

Imprecise Points-to Information

bufl=malloc(...) |5 Merge to
buf2=malloc(...) Fail due to

5 EorCP 7
Fail if(...) p=bufl Imprecision
4 ClosedPack | else p=buf2

it

buf1[0]=... OpenPack
3y —

MPI_Send(bufL, -] ﬂc’pe“”c"
MPI_Send(buf2, ... OpenPack
1 2 1 End
free(bufl) End

free(bu End End free(buf2)

free(buf2 End

Figure 13: Example of sender pattern detection analysis

Transfer Function
Dealljocate

AIIocatew OutR,OutW

R

Meet Function

- Unpack
- Fail Empty
Unpack Empty

Y nR[Inw

OutR, N
| Unpack Iatw’l Fail
InR,InW v

Rc

{ : OutR, OutW,|
"‘ﬁ"

Allojcate

—'l Start |

Figure 14: Receiver pattern detection backward analysis

—_—
‘Transformable‘

Figure 14 presents the receiver analysis. Like the sender anal-
ysis, it starts from state End. When a receive occurs, it transitions
to Empty to indicate an unused buffer. On Allocate it transitions
to Start and on InR and InW to Unpack. The analysis stays in
Unpack while it observes only InR and InW operations and stays
in Dead while it observes receives. It transitions to Fail whenever
OutR or OutW are observed in any state. This is a conservative
decision; while some applications with such accesses can be made
to use OPI (e.g. where communication is not inside a loop), this is
too complex in general. If Allocate is observed in state Unpack, the
analysis transitions to Start to indicate that the receiver OPI pattern
holds for this buffer. Otherwise, if Allocate is observed while in an-
other state, the analysis transitions to Fail. The meet of Unpack and
Empty is Unpack since this corresponds to applications that stop
unpacking on one side of a branch (looking forward in the code)
and continue unpacking on another side.

4.3 Transformation Analyses

If the backward pattern detection analysis indicates that a buffer’s
use follows the OPI code pattern, we use a forward transformation
analysis to identify the code locations that must be transformed to
use OPI. The left parts of Figures 15(a) and 15(b) show the transfer
functions of the sender and receiver analyses, respectively. Since
these are forward analyses, they begin at each buffer’s allocation
and terminate at its deallocation. Transformations are performed
when the transfer function transitions along an edge, as shown the
graphs on the right sides of the figures. When the original opera-
tion must be removed, it is crossed out in each graph. When it is
to be replaced with alternate code, the replacement code is spec-
ified. In the receiver transformation, transitions from Unpack and
Init to Init correspond to replacing MPI_Recv with an OPI_Free;
0PI_Take sequence.

Analysis Transformation))
Analysis Transformation

AIIolcate«--j—StorelSize A .
‘

| Start : |Start ‘
prm—— +OPITAlloc 4-=-OPI [Take
LORIW :
R {RW
| Pack ‘ | Pack ‘ \Z _OPI_Free;
Snce---—1 —OPI_Give L---""] OPI_Take
Dealljocate «++~Dealltocate : 3R,d U K
W iwl| Unpac
| End |'; i | End |'; Dealljocate «+---OPI | Free
End : End

(a) Sender

Figure 15: Transformation forward analysis

(b) Receiver

5. Experimental Results

Experimental results were obtained using the LLNL Sierra and
Cab systems. Sierra has two Xeon X5660 (six core, 2.8 GHz)
processors (12 cores total) and 24 GiB of RAM, while Cab has two
Xeon ES-2670 (eight core, 2.6 GHz) processors (16 cores total)
and 32 GiB of RAM. MVAPICH2 v1.8 was used for all results.
Since ownership passing is a shared memory optimization, we
show performance results for varying numbers of ranks executed
on a single node to avoid a network complicating the results. As
discussed in Section 4, our compiler analysis only works on simple
codes. All codes shown here were transformed manually.

5.1 Microbenchmark Analysis

We developed OPBench to analyze the performance characteristics
of ownership passing (as implemented by the OPI interface) and
compare them to MPI and HMPI. OPBench implements a simple
nearest-neighbor stencil, performing the following steps:

1. Computation time is simulated and measured by performing a
simple calculation on each of the elements of an array.

2. A pack loop copies the data from the ‘application’ data structure
to a communication buffer.

3. The communication buffers are exchanged between two ranks.

4. An unpack loop copies the data from the received communica-
tion buffer back to the application data structure.

For each iteration of the benchmark we perform step 1 once,
then repeat steps 2-4 four times to simulate multiple neighbors. We
ran our benchmark in two configurations on the Cab system: (i)
ranks are located on different cores within the same processor and
(ii) ranks are located on different processors. Each data point in the
results is an average of 5,000 benchmark iterations, with timings
acquired from both ranks.

Figure 16 shows the bandwidth achieved when packing, com-
municating, and unpacking a message (the sum of time taken
by steps 2, 3, 4 of OPBench) within and across processors. Fig-
ure 16(a) shows the total bandwidth achieved when packing, com-
municating, and unpacking a message (the sum of time taken by
steps 2, 3, 4 of OPBench) on cores within the same processor. OPI
(2.8 GB/s) significantly improves on HMPI (2.5 GB/s) and MPI
(1.75 GB/s). Here, OPI performance is bounded by the memory
bandwidth achieved during the pack and unpack phases.

Figure 16(b) shows the same measurement when both processes
are on distant cores on different sockets. Here, we see that HMPI
(2 GB/s) has a negligible benefit over MPI (2 GB/s) because MPI's
pipelined copy is essentially using the on-board interconnect as
well as HMPI can. MPI’s bandwidth is slightly higher than in
the previous case because the copy uses two NUMA domains and
thus gets twice the write bandwidth. OPI (2.7 GB/s) improves the
bandwidth significantly by streaming the data directly from the
source buffer, avoiding the additional copy completely.

To understand the performance properties of OPI in detail, we
measured cache behavior during OPBench execution. Figure 17(a)
shows the number of L1 cache misses incurred while packing, com-
municating and unpacking a message. The data shows that MPI in-
curs several times more misses than HMPI or OPI for communicat-
ing the same message. This is because MPI must copy data across
memory spaces, which involves the sender copying into a common
shared buffer and the receiver copying back from this buffer. In con-
trast, HMPI and OPI only perform a single direct data transfer from
one core to another. A key difference between the algorithms used
by the approaches is their effect on the cache itself, demonstrated
in Figure 17(b), which shows the number of L1 cache misses dur-
ing the execution of the simulated application code (step 1 of OP-

5 [WP ——
Z - HMPI i
S 25 OPI
o ° U = Rkl
5 e
5 2 ;
=) X At
g s z(.
%)/
o 1 X
2]
(0]
=
Q
©
2 \
& 2

PCEeSIREIZIITSSIIDSNE £

~— N O — M O N W —
~ N O
Message Size
(a) Same-socket throughput

5 [WP ——
g HMPI i
< 251 OPI
2
2 2
k=2
<
- 1.5
c
3
& 1 7
@
]
3 05 ;/
m ¥
2 i
(O] 0 Sl

PN IR YT EESISETES

Message Size
(b) Cross-socket throughput
Figure 16: Bandwidth for pack + communication + unpack on the
Cab system.

Bench). Since HMPI must copy the entire buffer into the receiver’s
cache before allowing it to read the data, it can pollute the cache
by evicting the application’s state. During subsequent computation
this state must be brought back into the cache, causing additional
misses. In contrast, OPI interleaves application reads and transfers
of message data, so it is less disruptive to the cache, resulting in
fewer cache misses for OPI than for HMPI or MPL.

5.2 MiniMD

MiniMD is part of the Mantevo [7] mini-application suite, which
consists of several mini-applications representing larger applica-
tion classes. Such mini-applications are increasingly used in ex-
ascale research for their combination of simplicity and relevance.
MiniMD is a molecular dynamics simulation that computes atom
movement over a 3D space decomposed into a processor grid. The
primary work loop performs the following steps every iteration:

1. Every 20th iteration, migrate atoms to different ranks depend-
ing on atom locations.

2. Exchange position information of atoms in boundary regions to
neighboring ranks.

3. Compute forces from both local atoms and those in boundary
regions from neighboring ranks.

4. Exchange force information of atoms in boundary regions to
neighboring ranks.

5. Update local atom velocities and positions.

16407 s
HMPI e -
OPI HV""*A
——
1e+06

B D I 2 I 2 e B D D 2N ISR

L1 data cache misses (lower is better)

100000

0 OAN X X X X ¥ X X
AN+~ AN 00N
— N 0 — M O

128k

256k
512k
im
2m

Message Size

(a) Total pack + communicate + unpack misses

@ 1e+06 VPl —

8 HMPI 3¢

» OPI

@ 0

g SN

£ 100000 S SR8

[0

& X

€ £

© 10000

5 x

(o]

(]

]

T

©

5 1000 L
PeSBRGLIAESEYFRENES

Message Size
(b) Application misses
Figure 17: L1 Cache misses for different components of OPBench
on the Cab system.

MiniMD is an example of a stencil communication pattern
that exchanges irregular data with point-to-point messages during
steps 2 and 4. We transformed these communication phases to use
ownership passing in the same manner as was done for the two-
dimensional stencil example described in Section 3.3.

Performance results are shown in Figure 18. Computation of
forces between atoms dominates execution time, so optimizing
communication has a smaller affect on overall application time.
When the communication time alone is considered, significant
speedups are observed—up to 43% on Sierra, and 51% on Cab.

5.3 Fast Fourier Transform

Fast Fourier Transforms (FFTs) are among the most important
operations in use today. Numerous algorithms and parallel ap-
plications use FFTs in their core computations [6, 9]. A one-
dimensional FFT transforms a one-dimensional array of N com-
plex numbers from real space to N complex numbers in frequency
space. Such a one-dimensional FFT can be expressed in terms of
multi-dimensional FFTs with additional application of twiddle fac-
tors [17, §12]. A multi-dimensional FFT with d dimensions can be
computed by applying one-dimensional FFTs in all d dimensions.
Multi-dimensional FFTs are very important in practice; image anal-
ysis often requires two-dimensional FFTs and transformations in
real-space require three-dimensional FFTs [6, 9].

We perform our experiments using a two-dimensional FFT ker-
nel. The original 2D FFT code is implemented using MPI and trans-
forms an N, x N, domain. The initial array is stored in x-major

= HMPI Communication s
& 90 - HMPI Application ===
g OPI 8ommunication
Pl Application
2 4 pp
[0
<
2
£ 30
o
2
3
o 20t
Q.
7]
<
a I I . |
o
a
0
2 4 6 8 10 12
MPI Ranks
(a) Sierra System
70 —
= HMPI Communication s
2 HMPI Application ===
E 60 OPI Communication
> OPI Application
— 50t
(O]
<
2 40
o
3 307
[0]
a
@ 20 I
c
[0
S 10t l
[0
a
0 |
2 4 6 8 10 12 14 16

MPI Ranks
(b) Cab System
Figure 18: MiniMD speedup using ownership passing and HMPI,

relative to MVAPICH2. A 4,000-atom problem size was used.
Application times include communication time.

order and distributed in y-dimension such that each process has
N, /P y-pencils. The steps to perform the 2D FFT are:

1. Perform N, /P 1D FFTs in y-dimension (NN, elements each).
. Serialize the array into a buffer for the all-to-all.

. Perform a global all-to-all.

R eSS I)

. De-serialize the array to be contiguous in the z-dimension (each
process now has N, /P z-pencils).

5. Perform N, /P 1D FFTs in the z-dimension (N, elements
each).

6. Serialize the array into a send buffer for the all-to-all.
7. Perform a global all-to-all.
8. De-serialize the array into its original layout.

The all-to-all communications in steps 3 and 6 make 2D
FFTs an interesting application for ownership passing. We perform
the all-to-all ownership passing transformation described in Sec-
tion 3.5. Each sender has one memory pool, from which it allocates
and packs one buffer for each other rank. As each rank is packed,
ownership is transferred to the receiver. Buffers are unpacked as
ownership control arrives from each other rank.

The 2D FFT execution time is dominated by all-to-all communi-
cation, which in turn is dominated by message copying overhead in
MPI. Ownership passing eliminates this overhead, leading to large
speedups. The remaining communication time is dominated by the

60

= HMPI Communication s
o HMPI Application ===
E 50 OPI Communication
@ OPI Application
2 40
2
.
o 30
=)
°
[0
S 20
2]
<
o
o
0
2 4 6 8 12
MPI Ranks
(a) Sierra System
= 50 HMP| Communication s
o] HMPI Application ===
o 40 | OPI Gommunication
‘@ OPI Application
8
2 30
=
o
>
B 20
(0]
o
2]
& 10t
(8]
o
0
2 4 6 8 12 16
MPI Ranks

(b) Cab System
Figure 19: 2D FFT speedup using ownership passing and HMPI,
relative to MVAPICH2. A 6,144x6,144 problem size was used.
Application times include communication time.

pack and unpack routines, which transpose the two-dimensional
matrix of FFT data points. Figure 19 shows the results, with com-
munication time speedups of up to 48% on Sierra and 35% on Cab.

6. Related Work

In Section 2, we introduced the concept of a thread-based MPI for
enabling direct memory access between ranks. An alternative ap-
proach is to use virtual memory extensions to directly map mem-
ory from one process into another [24, 25]. The advantage of this
approach is that the MPI process-rank design (i.e., a rank is a pro-
cess) remains intact. However, extensions to the operating system
are required and are not generally available on existing installa-
tions, limiting availability and portability.

The idea of ownership passing draws upon techniques that can
be found in distributed shared memory (DSM) systems [18] and
early cache coherence protocols [5]. In either case, ownership is
defined in the same manner—only one process is entitled to read
or write a particular block of memory (e.g., a page or cache line).
In this work, we use the concept of ownership to present a clean
interface to improved shared memory performance in the context
of MPI’s distributed memory model.

The Generic Message Passing Framework [11, 12] implements
a message passing interface for C++ that is reminiscent of MPI,
with an extension for doing ownership passing using the auto_ptr
reference counting pointer class. Our approach integrates with ex-

isting MPI, making it possible to incorporate ownership passing
into legacy applications written in FORTRAN, C, and C++.

Multi-Version Variables (MVVs) [4, §8] are a language exten-
sion to Co-Array FORTRAN for supporting a producer-consumer
communication channel. A memory pool concept similar to our
own is used to provide a form of streaming message passing in a
partitioned global address space (PGAS) language. Though similar,
our work describes a path for modifying legacy MPI applications
for improved performance on shared-memory hardware.

Ownership passing has been used to speed up other parallel pro-
gramming frameworks such as the actor-based framework Actor-
Foundry [15]. Significant performance benefits have been demon-
strated in this context. However, C or Fortran with MPI codes have
a more complex structure than ActorFoundry and complete static
analysis is thus not always possible.

7. Discussion and Conclusions

‘We show how the principle of ownership passing can be used with
MPI applications in order to utilize shared memory (multi-core)
hardware more efficiently. This principle is often used implicitly in
cache-coherency protocols and we extend it with a software inter-
face to be used explicitly. Our ownership passing interface (OPI) is
a simple extension to MPI and keeps MPI's ease of programming
and abstraction (as opposed to shared memory programming with
critical sections) while providing true zero-touch intra-node com-
munication.

We address the challenge of returning the buffers with sev-
eral pooling techniques. Our lock-free receiver pooling tech-
nique shows best results for practical applications where messages
(buffers) are often passed symmetrically between MPI ranks.

Our interface allows the porting of legacy MPI applications to
support “fat” shared memory nodes with simple transformations.
Our examples show that the transformation is indeed simple. We
provide a static compiler transformation that detects transformable
code patterns and replaces them with appropriate OPI calls.

Our performance studies with microbenchmarks and real appli-
cations show that ownership passing is an effective technique for
achieving better performance on shared memory hardware. Com-
munication time speedups of up to 51% in a molecular dynamics
application and 44% are realized in a two-dimensional FFT code.

Acknowledgments

This work was supported in part by the Department of Energy X-
Stack program and the Early Career award program. It was partially
performed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under Contract DE-
AC52-07NA27344. (LLNL-CONF-7777)

References

[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers:
Principles, Techniques, and Tools. Addison-Wesley, 2 edition, 2007.

[2] S. Borkar. Will interconnect help or limit the future of computing.
Presented as the 19th IEEE Conference on Hot Interconnects, 2011.

[3] G. Bronevetsky. Communication-sensitive static dataflow for parallel
message passing applications. In International Symposium on Code
Generation and Optimization (CGO), Mar. 2009.

[4] Y. Dotsenko. Expressiveness, programmability and portable high
performance of global address space languages. Technical report,
2006.

[5] S.J. Frank. Tightly Coupled Multiprocessor System Speeds Memory-
Access Times. Electronics, 57(1):164—169, Jan. 1984.

[6] X. Gonze et al. A brief introduction to the ABINIT software package.
Zeitschrift fr Kristallographie, 220(5-6-2005):558-562, 2005.

[7]1 M. A. Heroux, D. W. Dorfler, P. S. Crozier, J. M. Willenbring, H. C.
Edwards, A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist, and
R. W. Numrich. Improving performance via mini-applications. 2009.

[8] T. Hoefler and M. Snir. Writing Parallel Libraries with MPI - Common
Practice, Issues, and Extensions. In 18th European MPI Users’ Group
Meeting, EuroMPI, Proc., volume 6960, pages 345-355, Sep. 2011.

[9] S. Kumar, C. Huang, G. Zheng, E. Bohm, A. Bhatele, J. C. Phillips,
H. Yu, and L. V. Kalé. Scalable molecular dynamics with NAMD on
the IBM Blue Gene/L system. IBM J. Res. Dev., 52:177-188, January
2008.

[10] E. A. Lee. The problem with threads. Computer, 39(5):33-42, May
2006.

[11] L.-Q. Lee and A. Lumsdaine. Generic programming for high perfor-
mance scientific applications. In Proc. of the 2002 Joint ACM Java
Grande — ISCOPE Conference, pages 112—121. ACM Press, 2002.

[12] L.-Q. Lee and A. Lumsdaine. The generic message passing frame-
work. In Proceedings of the International Parallel and Distributed
Processing Symposium (IPDPS), page 53, April 2003.

[13] MPI Forum. MPI: A message-passing interface standard. version 2.2,
September 4th 2009.

[14] S. Negara, G. Zheng, K.-C. Pan, N. Negara, R. E. Johnson, L. V. Kale,
and P. M. Ricker. Automatic MPI to AMPI Program Transformation
using Photran. In 3rd Workshop on Productivity and Performance
(PROPER 2010), number 10-14, Ischia/Naples/Italy, August 2010.

[15] S. Negara, R. K. Karmani, and G. Agha. Inferring ownership transfer
for efficient message passing. In Proceedings of the 16th ACM sympo-
sium on Principles and practice of parallel programming, PPoPP 11,
pages 81-90, New York, NY, USA, 2011. ACM.

[16] M. Pérache, P. Carribault, and H. Jourdren. MPC-MPI: An MPI
implementation reducing the overall memory consumption. In Proc.
of the 16th European PVM/MPI Users’ Group Meeting, pages 94—103,
Berlin, Heidelberg, 2009. Springer-Verlag.

[17] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.
Numerical recipes in C (2nd ed.): the art of scientific computing.
Cambridge University Press, 1992.

[18] J. Protic, M. Tomasevic, and V. Milutinovic, editors. Distributed
Shared Memory: Concepts and Systems. 1EEE Computer Society
Press, Los Alamitos, CA, USA, 1st edition, 1997.

[19] D. J. Quinlan. Rose: Compiler support for object-oriented frame-
works. Parallel Processing Letters, 10(2/3):215-226, 2000.

[20] R. Rabenseifner. Hybrid parallel programming on HPC platforms.
In In proceedings of the Fifth European Workshop on OpenMP,
EWOMP’03, Aachen, Germany, 2003.

[21] R. Rabenseifner, G. Hager, and G. Jost. Hybrid mpi/openmp parallel
programming on clusters of multi-core smp nodes. In Proceedings
of the 2009 17th Euromicro International Conference on Parallel,
Distributed and Network-based Processing, PDP *09, pages 427436,
Washington, DC, USA, 2009. IEEE Computer Society.

[22] H. Tang and T. Yang. Optimizing threaded MPI execution on SMP
clusters. In ACM International Conference on Supercomputing (ICS),
pages 381 — 392, 2001.

[23] D. Turner and X. Chen. Protocol-dependent message-passing perfor-
mance on linux clusters. In Proceedings of the IEEE International
Conference on Cluster Computing, CLUSTER 02, pages 187—, Wash-
ington, DC, USA, 2002. IEEE Computer Society.

[24] S.-Y. Tzou and D. P. Anderson. The performance of message-passing
using restricted virtual memory remapping. Software - Practice and
Experience, 21:251-267, 1991.

[25] M. Woodacre, D. Robb, D. Roe, and K. Feind. The SGI Altix 3000
global shared-memory architecture. 2005.

