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Presburger arithmetic provides the mathematical core for the polyhedral compilation techniques that drive

analytical cache models, loop optimization for ML and HPC, formal verification, and even hardware design.

Polyhedral compilation is widely regarded as being slow due to the potentially high computational cost of

the underlying Presburger libraries. Researchers typically use these libraries as powerful black-box tools, but

the perceived internal complexity of these libraries, caused by the use of C as the implementation language

and a focus on end-user-facing documentation, holds back broader performance-optimization efforts. With

FPL, we introduce a new library for Presburger arithmetic built from the ground up in modern C++. We

carefully document its internal algorithmic foundations, use lightweight C++ data structures to minimize

memory management costs, and deploy transprecision computing across the entire library to effectively

exploit machine integers and vector instructions. On a newly-developed comprehensive benchmark suite

for Presburger arithmetic, we show a 5.4x speedup in total runtime over the state-of-the-art library isl in its

default configuration and 3.6x over a variant of isl optimized with element-wise transprecision computing.

We expect that the availability of a well-documented and fast Presburger library will accelerate the adoption

of polyhedral compilation techniques in production compilers.
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1 INTRODUCTION

Polyhedral compilation [Verdoolaege 2016] based on Presburger arithmetic [Haase 2018] is widely
used for performance optimization in high-performance computing and machine learning [Bagh-
dadi et al. 2019; Chen et al. 2018; Grosser and Hoefler 2016; Vasilache et al. 2018], formal verifi-
cation [Namjoshi and Singhania 2016], cache modeling [Gysi et al. 2019], the derivation of data
movement bounds [Olivry et al. 2020], and configurable computing [Pouchet et al. 2013]. The
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performance of such techniques is important in scenarios such as just-in-time compilation, but the
performance aspect has not often been a focus in the past [Lattner et al. 2021]. A large fraction of
the cost of polyhedral approaches lies in computing the results of Presburger set operations. Grosser
et al. [2020] ran the Polly polyhedral loop optimizer [Grosser et al. 2012] on computational kernels
in Polybench [Pouchet 2012] and found that 71% of Polly’s runtime was spent in the underlying
math library for Presburger arithmetic. Polyhedral analyses, such as cache modeling, consist almost
entirely of sequences of Presburger arithmetic operations.

We investigate how polyhedral compilers spend time in Presburger set operations by developing
a comprehensive benchmark suite. We run Polly, the PPCG GPU compiler [Verdoolaege et al.
2013], and Pluto [Bondhugula and Ramanujam 2007] on Polybench [Pouchet 2012] and extract the
Presburger set operations they perform.We thereby obtain a benchmark suite consisting of 1,129,239
test cases distributed across eight key operations: union, intersect, subtract, complement, equality
checking, emptiness checking, eliminating existential quantifiers, and coalescing [Verdoolaege
2015]. We find that the dimensionalities of the sets involved are typically quite small, with the
median set having only eight dimensions (Figure 6a). We also find that 99% of constraint coefficients
in the test cases fit within just 9 bits (Figure 6d). We exploit these observations when designing and
optimizing our Presburger library.
Existing Presburger libraries such as isl [Verdoolaege 2010] typically use arbitrary-precision

arithmetic for all their computations since this may be necessary for correctness in the worst
case. However, this is far from the common case: FPL can compute 90% of the test cases in our
benchmark suite using only 16-bit machine integers, and isl spends over 74% of its runtime on
such test cases (Figure 13). The performance-critical parts of a Presburger library largely consist of
row operations on matrices of integers (Section 2). Using machine integers allows us to vectorize
these performance-critical row operations, magnifying the performance potential of transprecision
computing.

We use 16-bit integers for all our computations whenever possible and fall back to wider integer
types or arbitrary-precision only if an overflow occurs. This gives us the best of both worlds:
vectorized computations using machine integers for the common case, and a fallback to arbitrary-
precision integers to preserve correctness in the rare case where this is needed. Grosser et al. [2020]
implemented such a transprecision approach at two possible levels of granularity: at the matrix level,
and at the element level. Both of these approaches were embedded within isl. Their matrix-level
transprecision implementation focused on only one particular operation and depended heavily
on C++ templates, while isl is a C library. isl implements its own hand-rolled templates using C
macros, but these are difficult to understand and maintain; it would be impractical to scale this to
the whole library. Their element-level transprecision approach allowed each individual integer to
switch between 32-bit integers and arbitrary-precision arithmetic, which inhibits vectorization.
This approach also pays a higher overhead, since every operation on integers must check the state
of the transprecision integer and dispatch to the appropriate version of the operation. As these
approaches were embedded in isl, they inherit its disadvantages: isl’s implementation does a lot of
dynamic memory management, manual reference counting, and pointer chasing.

Ideally, we would like a separate vectorized library that computes with 16-bit integers and returns
an error if an overflow occurs. In case of overflow, we would then retry the same computation
with a higher precision library. In this design, the overhead of transprecision is minimal as we
only have to perform a single dispatch as to which library to use, rather than dispatching for each
low-level integer operation. In the common case, this design has almost no overhead for supporting
transprecision.
We introduce FPL, a Fast Presburger Library that implements transprecision computing at the

library level and uses data structures that minimize dynamic memory allocation. In particular,
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we leverage LLVM [Lattner and Adve 2004] data structures like SmallVector, which stores its
elements inline up to a specified size and only dynamically allocates memory if the inline memory
proves insufficient. Large parts of FPL have been upstreamed to LLVM’s MLIR project, where it is
already being used to enable affine loop fusion.

FPL implements transprecision computing by leveraging C++ templates to support instantiating
the library with any integer type, and therefore providing a separate code path for each integer
type. Our library also provides an API that transparently switches between integer types as needed
by instantiating the library with the appropriate integer type. Overall, we find that FPL achieves a
5.4x speedup in terms of total runtime over isl with arbitrary precision arithmetic (GMP) and 3.6x
over isl enhanced with the element-wise transprecision approach.
Our library follows the algorithmic design of earlier polyhedral libraries such as Omega [Kelly

et al. 1996], VPL [Fouilhe 2015], Polylib [Loechner 1999] and, in particular, isl [Verdoolaege 2010].
In this work, we document the underlying algorithmic foundations and provide a performance
analysis of these algorithms (Section 4), which we expect to encourage further work into optimizing
Presburger libraries. Our contributions are:

• A fast transprecision Presburger library implemented in modern C++ that:
– specializes for small values using transprecision computing at the library level, and
– uses a lightweight design that avoids pointer indirections and leverages data structures
that use fewer dynamic allocations.

• A detailed documentation and performance analysis of the algorithmic foundations of a
modern Presburger library (Section 4).

• A benchmark suite for Presburger arithmetic that characterizes typical workloads in polyhe-
dral compilation.1

• A detailed performance evaluation of our new library that shows a 5.4x speedup in total
runtime over isl in its default configuration and a 3.6x speedup over isl enhanced with an
element-wise transprecision optimization (Section 6).

2 PRESBURGER ARITHMETIC IN FPL

We describe Presburger arithmetic as implemented in FPL, laying out the kinds of constraints and
sets that are allowed. We also briefly describe some key implementation specifics and outline the
performance characteristics of our system. Building on this, we describe the architecture of our
library (Section 3) and its algorithmic foundations (Section 4).

2.1 Basic Sets

A basic set is the set of solutions to a list of affine constraints over𝑛 integer-valued variables. Suppose
the variables are 𝑥1, 𝑥2, . . . , 𝑥𝑛 ∈ Z. Affine constraints can be inequalities like 𝑎1𝑥1+ . . .+𝑎𝑛𝑥𝑛+𝑐 ≥ 0
or equalities such as 𝑎1𝑥1 + . . . +𝑎𝑛𝑥𝑛 + 𝑐 = 0, where the coefficients 𝑎1, . . . 𝑎𝑛 and the constant term
𝑐 must be integers. Such a set corresponds to the set of integer points lying in a convex polytope.
For example, consider the set {(𝑥,𝑦) ∈ Z2 : 1 ≤ 𝑥 ≤ 7 ∧ 𝑥 = 2𝑦}, which we write for brevity as
{(𝑥,𝑦) : 1 ≤ 𝑥 ≤ 7 ∧ 𝑥 = 2𝑦}. This set contains the points (2, 1), (4, 2), and (6, 3). We will refer
to 𝑥 and 𝑦 as ordinary variables, in contrast to symbolic, existential, and division variables, as
detailed below. FPL stores a basic set as two vectors of constraints: one for inequalities and one for
equalities. Each constraint is stored as a vector of coefficients (integers).

Symbolic Variables. Symbolic variables correspond to fixed, but unknown values. Mathematically,
a basic set with symbolic variables is like a family of basic sets indexed by the symbolic variables.
For example, (𝑝, 𝑞) → {𝑥 : 𝑝 ≤ 𝑥 ≤ 𝑞} is a family of Presburger sets indexed by two integers

1Available at https://github.com/Superty/presburger-benchmarks.
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𝑝 and 𝑞, i.e., for any 𝑝, 𝑞 ∈ Z, 𝑆𝑝,𝑞 = {𝑥 : 𝑝 ≤ 𝑥 ≤ 𝑞}. For example, 𝑆1,0 is the empty set and
𝑆−3,−1 = {−3,−2,−1}. The basic set must still be described as a conjunction of affine constraints
over the ordinary and symbolic variables. A non-example is 𝑝 → {𝑥 : 𝑥 = 𝑝2}; this is not a valid
basic set since the constraint is quadratic in the variable 𝑝 .

Existential Quantification. Variables can be existentially quantified. For example, consider the set
{𝑥 : ∃ 𝑦, 1 ≤ 𝑥 ≤ 7∧𝑥 = 2𝑦}. An assignment to the symbolic and ordinary variables is valid if there
exists some assignment to the existentially quantified variables satisfying the constraints, so this set
is equivalent to {2, 4, 6}. This set can be viewed as the result of projecting out the variable 𝑦 from
the set {(𝑥,𝑦) : 1 ≤ 𝑥 ≤ 7∧𝑥 = 2𝑦}. In general, a set with existential variables can be viewed as the
result of projecting out some variables from a basic set without existentially quantified variables.

Division Variables. We can support floor divisions of affine expressions by constants by exploiting
existential quantification. As a result, we can support modulo constraints by representing them
using floor divisions. For example, consider the set {𝑥 : 𝑥 ≡ 1 mod 3 ∧ 2 ≤ 𝑥 ≤ 6}, equivalent to
{2, 5}. ⌊𝑥/3⌋ is the quotient on dividing 𝑥 by 3 and 𝑥 − 3⌊𝑥/3⌋ is the remainder, so we can represent
this set as {𝑥 : 𝑥 − 3⌊𝑥/3⌋ = 1 ∧ 2 ≤ 𝑥 ≤ 6}. The remainder must lie between 0 and 2, so we know
that 0 ≤ 𝑥 − 3⌊𝑥/3⌋ ≤ 2. In fact, the only integer value of 𝑞 satisfying 0 ≤ 𝑥 − 3𝑞 ≤ 2 is 𝑞 = ⌊𝑥/3⌋.
Since increasing or decreasing 𝑞 by one decreases or increases 𝑥 − 3𝑞 by three, there is exactly
one value of 𝑞 such that 𝑥 − 3𝑞 lies between 0 and 2. The above set can therefore be rewritten
as {𝑥 : ∃ 𝑞, 0 ≤ 𝑥 − 3𝑞 ≤ 2 ∧ 𝑥 − 3𝑞 = 1 ∧ 2 ≤ 𝑥 ≤ 6}. Note that one cannot eliminate the extra
variable here; the constraint that 𝑞 is an integer is crucial. In general, we can support any floor
divisions where the numerator is an affine expression 𝑎1𝑥1 + . . . + 𝑎𝑛𝑥𝑛 + 𝑐 and the denominator is
a fixed positive integer 𝑑 by adding an existentially quantified variable 𝑞 along with the additional
constraint that 0 ≤ 𝑎1𝑥1 + . . . + 𝑎𝑛𝑥𝑛 + 𝑐 − 𝑞𝑑 ≤ 𝑑 − 1.

We refer to the variable 𝑞 introduced above as a division variable, and we use the term łexistential
variablež only for existentially quantified variables that are not division variables. Although divisions
are implemented in Presburger arithmetic as an added existentially quantified variable along
with two inequalities, we distinguish between existential variables and division variables. Our
implementation explicitly stores the representation of the added variable as the floor division of
an affine expression by an integer. This additional information helps us handle division variables
better than existential variables, and we sometimes need to convert a representation of a set using
existential variables into one that only has division variables, which we refer to as eliminating
existential variables Section 4.1.3. The two added inequalities are not stored explicitly, but can be
recovered from the floor division representation whenever necessary. It turns out to be useful to
deal with these division constraints separately from the other inequalities when computing set
differences (Section 4.2.3).

2.2 Presburger Sets

In our library, Presburger sets are unions of basic sets. For example, the set {𝑥 : (∃ 𝑞, 𝑥 = 2𝑞)} ∪
{𝑥 : ∃ 𝑞, 𝑥 = 3𝑞)} is the union of two basic sets and contains numbers that are either multiples of 2
or multiples of 3. This can also be viewed as allowing ORs of constraints; for example, the above
set can be written as {𝑥 : (∃ 𝑞, 𝑥 = 2𝑞) ∨ (∃ 𝑞, 𝑥 = 3𝑞)}. FPL stores Presburger sets as a vector of
basic sets of which the Presburger set is a union.

2.3 Set Operations

Our library supports a core set of operations on Presburger sets: union, intersect, subtract, com-
plement, coalesce, equality checks, and emptiness checks. The implementations of the union and
intersect operations consist entirely of copying around basic sets and constraints and are therefore
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PresburgerSet<BigInt> Core Algorithms <BigInt>

PresburgerSet<int64_t> Core Algorithms <int64_t>

TransprecisionSet

Precision Dispatcher

intersect()

union()

complement()

isEmpty()

Parametric Integer
Programming <int16_t>

eliminate
Existentials()

Generalized Basis
Reduction <int16_t>

Simplex<int16_t>
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Core Algorithms <int16_t>

isEqual()
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Increase precision
Retry

int16_t

int64_t
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Fig. 1. The architecture of FPL. The implementations of the core operations and algorithms are templated on

the integer type to be used. TransprecisionSet is a wrapper that dispatches to the version of our library

with the correct precision. When an overflow occurs at the specified precision, an exception is thrown. This

is caught by TransprecisionSet, which then retries the operation at a higher precision level. Our actual

implementation also has a level where __int128_t is used.

quite amenable to vectorization. The complement operation is implemented as a subtraction, and
the equality check is implemented using subtractions and emptiness checks (Figure 1).

The subtract operation makes use of the functionality for eliminating existential variables, which
is based on our implementation of the Parametric Integer Programming algorithm of Feautrier
[1988]. The emptiness check depends on our implementation of the Generalized Basis Reduction
algorithm of Lovász and Scarf [1992]. We also implement the integer set coalescing algorithm
described by Verdoolaege [2015]. All these algorithms crucially depend on support for linear
programming with the ability to iteratively add constraints and roll back to an earlier state, which
is provided by our implementation of the Simplex algorithm based on Simplify [Detlefs et al. 2005].

Optimizing the Simplex implementation is crucial since most of the operations depend on it. In
fact, 51% of the runtime of our library is spent in Simplex. The main performance bottleneck of the
Simplex algorithm in turn lies in the pivot operation. In our implementation, a pivot essentially
consists of a sequence of row operations on a matrix of integers and can therefore be vectorized.

3 THE ARCHITECTURE OF FPL

FPL uses library-level transprecision computing to run on vectorized 16-bit arithmetic in the
common case and to safely fall back to wider integer types when required, all while minimizing
the dispatch overhead of switching between precision levels.

3.1 Library-Level Transprecision Computing

In FPL, the implementations of the core algorithms and set operations are oblivious to transprecision
(Figure 1). Instead, they abstract over the integer type to be used, which is taken as a C++ template
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parameter. All computations are performed using overflow-checked arithmetic with the specified
integer type.2 Whenever an overflow occurs, an exception is thrown.

Transprecision computing is supported via a wrapper class TransprecisionSet which manages
the integer type to be used and dispatches to the appropriate instantiation of FPL. This class
contains an std::variant holding a PresburgerSet<int16_t>, a PresburgerSet<int64_t>, a
PresburgerSet<__int128_t>, or a PresburgerSet<BigInt>. It dispatches calls to the appropriate
PresburgerSet<Int> instantiation of the templated library, guarded by a try/catch block. If an
overflow exception is thrown, TransprecisionSet copies the currently held sets in the operands
to a PresburgerSet<WiderInt> and retries the operation. This process can potentially continue
until it switches to BigInt, after which no more overflows are possible.
We find that overflows are quite rare ś 90% of test cases work with 16-bit integers and never

overflow. Moreover, an overflow can only occur a few times in the course of a TransprecisionSet’s
lifetime before it switches into arbitrary precision arithmetic. Therefore, the cost of throwing an
exception turns out to be negligible.

By building a new Presburger library in C++, we are able to incorporate the precision to be used
as a template parameter to the whole library. Such an approach would be difficult to incorporate
into any existing library. In particular, this would be difficult to do manually in a C library like isl.
One interesting direction of future research is to investigate whether transprecision computing
could be applied automatically by the compiler, perhaps by annotating classes where this technique
should be used. We hope to motivate further investigations by showcasing our results from using
library-level transprecision computing for Presburger arithmetic in FPL.

FPL also works well with the realities of modern systems.We usememory-efficient data structures
such as LLVM’s SmallVector, which holds some inline memory and uses this to store its elements.
It allocates dynamic memory only when the size of the vector overflows this inline memory. FPL
also avoids pointer chasing, which is common in isl. We find that FPL makes 40% fewer calls to
memory allocation primitives than isl.

3.2 Dispatch Overhead Is Minimized

The advantage of our design is that we execute a completely different code path for each integer type,
and we are therefore able to support transprecision computing with minimal overhead. In a matrix-
level or element-level implementation of transprecision computing, we have to continually dispatch
into a precision-specific code path at a low-level, i.e., whenever we interact with a matrix or an
integer, respectively. Moreover, whenever two transprecision objects interact with each other, such
as in a binary operation involving two integers in element-level transprecision, it is necessary to
bring both the objects to the same precision level before dispatch. In our library-level transprecision
implementation, the objects we have to bring to the same precision are TransprecisionSets, and
this only occurs once per high-level set operation, rather than being done for each low-level integer
operation. Moreover, we only have to dispatch once per high-level operation, after which each
integer type follows a completely separate code path and doesn’t incur any dispatch overhead to
support transprecision.
Our transprecision design is nearly optimal for the common case where the test case can be

run entirely using 16-bit integers. A roofline for the common case would be a library that only
supported cases that can be run with 16-bit integers and returns an error if an overflow occurs.
The only overhead of FPL over such a library is a single branch per high-level set operation in the
wrapper class TransprecisionSet to switch into the correct held alternative in the std::variant.

2Except in the case of BigInt, where no overflow checks are needed.
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Table 1. The AVX-512 instruction set is not complete, but the available instructions depend on the bitwidth of

the elements they process. Only for 16-bit elements does AVX-512 have native instructions for computing the

high-bits of a multiplication as well as element-wise saturation ś both important components for overflow

checks.

Instruction 8-bit 16-bit 32-bit 64-bit

SIMD multiplication ✗ ✓ ✓ ✓

SIMD multiplication - high-bits ✗ ✓ ✓ ✗

SIMD addition ✓ ✓ ✓ ✓

SIMD addition - with saturation ✓ ✓ ✗ ✗

3.3 Vectorization

We use int16_t as our starting integer type as this enables efficient vectorized operations with
overflow checks. Our library targets modern hardware with support for AVX-512 instructions.
However, even in AVX-512, only 16-bit integers have native instructions for both computing the
high bits of vector multiplication as well as element-wise saturated addition (Table 1, [Grosser et al.
2020]), which are important components of overflow-checked vectorized operations. In particular,
computing the high bits of multiplications when each element is an 8-bit integer is not supported,
which makes it difficult to use vectorized overflow-checked arithmetic with 8-bit integers.

We use LLVM’s support for OpenCL vector extensions to implement overflow-checked vector
arithmetic. LLVM IR supports intrinsics for vectorized operations with overflow checks. However,
these are not exposed by the clang frontend. In an initial phase of development, we used a patched
version of clang to expose these. We found that when targeting AVX-512, these intrinsics get
lowered using instructions for saturated additions and getting the high bits of multiplications. We
currently implement vectorized overflow checks directly in our C++ code by leveraging the C API
to the Intel AVX-512 intrinsics. We use this API to perform saturated addition and get high bits of
multiplication on our OpenCL vectors, since these operations are not directly supported. We expect
that this could be implemented portably without performance loss by using LLVM IR’s intrinsics
and letting the compiler lower it appropriately. For example, the same approach could be supported
in ARM SVE, which supports saturated addition and computing high bits of multiplication for all
bitwidths we consider.

We target our vectorization efforts on computations using matrices of 16-bit integers having at
most 32 columns, as a single AVX-512 vector register can hold an entire row from such a matrix.
This is justified by our evaluation, which shows that in our benchmark suite, over 74% of isl’s
runtime is spent on test cases that we can compute using 16-bit integers and matrices with at most
32 columns.

Our library-level transprecision approachmakes it possible to vectorize the copying of constraints,
since a constraint is just a vector of integers. As we will see, most of the algorithms used in FPL
involve quite a bit of constraint copying (Section 4). Note that in an element-level transprecision
approach, each element of the vector would be a transprecision integer, probably implemented as a
union or variant whose possible types must include an arbitrary-precision integer type. Therefore,
vectorization would not be possible in the element-wise transprecision approach.

4 ALGORITHMIC FOUNDATIONS

We describe FPL’s algorithmic design, detailing the algorithms used to implement each of the
core Presburger set operations. Moreover, we provide a performance analysis of each algorithm,
describing their worst-case asymptotic time complexity, the expected behavior in practice, and
optimization opportunities such as vectorization.
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Fig. 2. Fraction of runtime spent in Simplex and in computing and applying linear transforms. These are the

main two modules used in our algorithms (Section 4), and they account for less than 63% of the total runtime,

indicating that a lower-level approach that applies transprecision computing to such specific submodules

may miss out on accelerating a large fraction of the runtime.

To aid our performance analysis of the different set operations, we run FPL on our benchmark
suite (Section 6.1) and measure how much time is spent in the key modules (Figure 2) like the
Simplex implementation (Section 4.1.2) and linear transforms (Section 4.2.4).
FPL implements key algorithms from operational research and polyhedral compilation. Our

algorithmic choices are inspired by work on parametric integer programming by Feautrier [1988],
the use of Simplex for program analysis in Simplify [Detlefs et al. 2005], as well as various polyhedral
libraries [Kelly et al. 1996; Loechner 1999], in particular, the integer set library by Verdoolaege
[2010]. While Section 7 details this relationship, we focus now on the algorithmic design and
concrete implementation of the library.

4.1 Auxiliary Operations

The library provides a number of auxiliary operations that are important building blocks for the
implementation of higher-level operations on Presburger sets.

4.1.1 Bringing Basic Sets to a Common Space. Before computing binary operations on two basic
sets, we must bring the basic sets into a common space of variables. A binary operation on two
sets is only well-defined if both the sets have the same symbolic and ordinary variables. However,
as mentioned before, the existential and division variables of the two sets are considered to be
different. For example, the intersection of {𝑥 : ∃𝑝, 𝑥 = 2𝑝} and {𝑥 : ∃𝑝, 𝑥 = 3𝑝} is represented as
{𝑥 : ∃𝑝1, 𝑝2, 𝑥 = 2𝑝1 + 0𝑝2 ∧ 𝑥 = 0𝑝1 + 3𝑝2}, where we show the zero coefficients for clarity. We
implement this by lifting the two sets to a space that has the existential and division variables of
both the sets. In this case, {𝑥 : ∃𝑝, 𝑥 = 2𝑝} becomes {𝑥 : ∃𝑝1, 𝑝2, 𝑥 = 2𝑝1 +0𝑝2} and {𝑥 : ∃𝑝, 𝑥 = 3𝑝}
becomes {𝑥 : ∃𝑝1, 𝑝2, 𝑥 = 0𝑝1 + 3𝑝2}. We can then run our intersection algorithm assuming the
variables in both the sets to be the same.

In general, the common space of two basic sets is the one created by taking the common ordinary
and symbolic variables, and including separately the existential and division variables from both
the sets. The constraints in the first set use only variables that were originally in the first set ś as
in the example, their coefficient lists will be padded to have zero coefficients for all the existential
and division variables that were added from the second set. Similarly, the constraints of the second
set have zero coefficients inserted for all the existential and division variables from the first set.
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Performance Analysis. This operation essentially inserts some zero-initialized columns into a
matrix, where the rows of the matrix are constraints and the columns are dimensions. This takes
linear time. As we will see, for most operations it is preferable to store the constraint matrix in
row-major form, so there is little opportunity for vectorization here.

4.1.2 Simplex. Our library uses an implementation of the Simplex algorithm based on ideas from
Simplify [Detlefs et al. 2005]. This algorithm can be used to query properties of basic sets using
linear programming, such as computing the maximum and minimum values of an affine expression
subject to the constraints of a basic set, detecting rational redundancies in constraints, finding a
rational sample point, and checking for rational emptiness. A subset of constraints is rationally
redundant if removing these constraints does not introduce any new rational solutions. A rational
sample point is a rational solution to the constraints in the set, and a basic set is rationally empty if
it contains no rational sample point. Computing such rational properties is done using the Simplex
algorithm, which is efficient in practice [Schrijver 1986; Shamir 1987]. We found that we never
required more than 115 pivot steps to solve any linear programming problem that arises in our
entire benchmark suite (Figure 15).

The Simplify-based implementation also supports incrementally adding constraints, taking snap-
shots, and rolling back changes to a prior snapshot. This capability is used in the implementations
of the Parametric Integer Programming [Feautrier 1988] and Generalized Basis Reduction [Lovász
and Scarf 1992] algorithms, as well as the subtraction algorithm.

Performance Analysis. The Simplex algorithm can take exponential time in the worst case. How-
ever, it is known to be quite efficient in practice. The main bottleneck of the Simplex algorithm lies
in the pivot operation. With an appropriate choice of internal representation, the main bottleneck of
the pivot function can be written as a series of row operations on a matrix. The Simplex algorithm
therefore benefits greatly from vectorization [Grosser et al. 2020].

4.1.3 Eliminating Existential Variables. The algorithm for subtraction does not directly support
sets containing existential variables, but does support sets containing division variables. In this
section, we describe an algorithm that, given a basic set containing existential variables, finds
a representation of the same set that does not involve any existential variables, though it may
involve division variables. For example, {𝑥 : ∃𝑞, 𝑥 = 6𝑞} is actually the set of multiples of 6. We can
represent this set as {𝑥 : 𝑥 = 6⌊𝑥/6⌋}, which does not involve any existential variables though it
does involve division variables.
We eliminate existential variables using the Parametric Integer Programming (PIP) algorithm

of Feautrier [1988]. Given a basic set where some variables are tagged as parameters and the rest
are non-parameters, such that the non-parameters are all constrained to be non-negative, PIP
can compute the set of values of the parameters such that there exists an assignment to the non-
parameters satisfying the constraints. This set of values is represented as a basic set in the space of
parameters. The representation of this basic set may involve division variables, but will not involve
any existential variables. The implementation of PIP internally uses the Simplex implementation
described in Section 4.1.2.
We eliminate existential variables from a basic set by running PIP on it, setting the existential

variables as non-parameters and setting the other variables as parameters. PIP returns a Presburger
set corresponding to the set of values of the variables other than the existential variables such that
there exists some satisfying assignment to the existential variables, which is therefore another
representation of the same basic set, and one that does not contain any existential variables.
However, this may not work if some existential variables can attain negative values since the PIP
algorithm as described by Feautrier [Feautrier 1988] does not support this case.
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We support negative-valued existential variables by transforming each existential variable 𝑒𝑖
to 𝑒𝑖 +𝑀 , where 𝑀 is a newly added variable. We consider 𝑀 to have a value of infinity in our
implementation of the PIP algorithm, so that our new existential variables 𝑒𝑖 +𝑀 are guaranteed
to be non-negative. If the original variables were 𝑥1, . . . 𝑥𝑛, 𝑒1, . . . 𝑒𝑚 , then after performing the
transform the variables become 𝑥1, . . . 𝑥𝑛, 𝑒1 +𝑀, . . . 𝑒𝑚 +𝑀,𝑀 .

Performance Analysis. The PIP algorithm involves running two instances of Simplex in parallel
and spends most of its time in these (Figure 2), so it benefits greatly from optimizations to Simplex.
Its runtime is exponential in the worst case since it uses Simplex.

4.2 High-Level Operations

Our library provides a set of high-level operations on Presburger sets: union, intersect, subtract,
complement, sample, equality, and coalesce. In this section, we describe the algorithms used to
implement these operations. Throughout this discussion, we will use 𝑑 to refer to the total number
of variables in the common space of all the basic sets involved.

4.2.1 Union. The union of two Presburger sets 𝑆 and 𝑇 is a set whose list of basic sets is the
concatenation of the lists of 𝑆 and 𝑇 .

Performance Analysis. If the list of basic sets is represented as a list of pointers to basic sets, one
could use a copy-on-write optimization and refrain from copying the basics sets themselves until
necessary. This approach is used by isl. However, this induces an overhead in terms of pointer
chasing and reference counting, which FPL avoids. Moreover, we find that the fraction of time
spent in the union operation is negligible (Figure 9).

FPL stores the basic sets as a vector of objects. If the operands are temporary values that will not
be reused, we can move the basic sets instead of copying them. When data structures with inline
memory are used, moving has a relatively lower performance benefit. Since union forms a very
small fraction of the total runtime, it is still worthwhile to use such data structures.

4.2.2 Intersect. We represent the intersection of two Presburger sets 𝑆 and 𝑇 as the union of
intersections of basic sets. Let 𝑆 =

⋃

𝑖 𝑆𝑖 and 𝑇 =
⋃

𝑗 𝑇𝑗 be Presburger sets which are the unions

of basic sets 𝑆𝑖 and 𝑇𝑖 respectively. Then we have 𝑆 ∩ 𝑇 =
(

∪𝑖 𝑆𝑖
)

∩
(

∪𝑗 𝑇𝑗
)

= ∪𝑖 ∪𝑗

(

𝑆𝑖 ∩ 𝑇𝑗
)

.
To intersect two basic sets 𝑆𝑖 and 𝑇𝑗 , we first bring them to a common space (Section 4.1.1). The
intersection of two basic sets that lie in the same space is simply the basic set that satisfies both
lists of constraints, i.e., a basic set whose lists of inequalities and equalities are the concatenations
of the respective lists.

Performance Analysis. Let 𝑛(𝑆), 𝑐 (𝑆) and 𝑛(𝑇 ), 𝑐 (𝑇 ) be the number of basic sets and the maximum
number of constraints in any basic set in 𝑆 and 𝑇 respectively. The result has 𝑛(𝑆)𝑛(𝑇 ) basic sets
and 𝑛(𝑆)𝑐 (𝑆)𝑛(𝑇 ) + 𝑛(𝑇 )𝑐 (𝑇 )𝑛(𝑆) constraints, so the total number of integer coefficients in the
result is 𝑂 (𝑑 · [𝑛(𝑆)𝑐 (𝑆)𝑛(𝑇 ) + 𝑛(𝑇 )𝑐 (𝑇 )𝑛(𝑆)]). Constructing the result therefore takes quadratic
time. Since intersection mostly involves copying around constraints between sets, this can easily
benefit from vectorization.

4.2.3 Subtract and Complement. We introduce subtract and complement together, as their imple-
mentations depend on each other. We first discuss how to handle basic sets without existentials or
divisions, then discuss how to handle existentials and divisions in basic sets, and finally discuss
how to subtract and complement full Presburger sets.

Basic Sets without Existentials or Divisions. The complement of a basic set is the union of multiple
basic sets, one for each constraint. The basic set for each constraint corresponds to the region where
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that constraint is the first constraint violated. Consider the basic set {(𝑥,𝑦) : 𝑥 ≥ 0 ∧ 𝑦 ≥ 0}. The
subtraction algorithm represents the complement of this set as {𝑥 : (𝑥 ≤ −1) ∨ (𝑥 ≥ 0 ∧ 𝑦 ≤ −1)}.
We have two basic sets here; the first is the set of points not satisfying the first constraint, and
the second is the set of points satisfying the first constraint but not the second. One could also
represent the result set as {𝑥 : (𝑥 ≤ −1) ∨ (𝑦 ≤ −1)}. However, the former approach is preferred
as this produces basic sets that are smaller (have fewer points), which in turn makes it more likely
that the heuristics detailed below get triggered.

The complement of the set of solutions to 𝑎1𝑥1 + . . . + 𝑎𝑛𝑥𝑛 + 𝑐 ≥ 0 is just the set of solutions to
𝑎1𝑥1 + . . . +𝑎𝑛𝑥𝑛 + 𝑐 ≤ −1, since the variables are integers. Similarly, for equalities, the complement
of the set of solutions to 𝑎1𝑥1 + . . . + 𝑎𝑛𝑥𝑛 + 𝑐 = 0 is the set of solutions to (𝑎1𝑥1 + . . . + 𝑎𝑛𝑥𝑛 + 𝑐 ≤

−1) ∨ (𝑎1𝑥1 + . . . + 𝑎𝑛𝑥𝑛 + 𝑐 ≥ 1).
In general, let 𝐵 =

⋂

𝑖 𝐵𝑖 be a basic set without existential or division variables, where each 𝐵𝑖 is
the set of solutions to a single inequality. We write the complement 𝐵𝑐 as the union of the parts 𝐵𝑐1,
𝐵1 ∩ 𝐵𝑐2, 𝐵1 ∩ 𝐵2 ∩ 𝐵𝑐3 and so on. Here the first disjunct, 𝐵

𝑐
1 is the set of points that do not satisfy the

first constraint. The second disjunct, 𝐵1 ∩ 𝐵𝑐2 is the set of points that satisfy the first constraint but
not the second. Similarly, the 𝑖th disjunct is the set of points that satisfy the first 𝑖 − 1 constraints
but not the 𝑖th. Since this is a partition of the invalid points according to the first constraint they
violate, this expression is equal to 𝐵𝑐 . This also allows us to subtract basic sets, since for basic sets
𝐴 and 𝐵, 𝐴 \ 𝐵 = 𝐴 ∩ 𝐵𝑐 .

Basic Sets with Existentials or Divisions. Consider the set {𝑥 : 𝑥 = 7⌊𝑥/7⌋}. It is clear that
the complement of this set is {𝑥 : 𝑥 ≠ 7⌊𝑥/7⌋}, even though divisions are implemented in
Presburger arithmetic by adding extra existentially quantified variables. Therefore, we handle
divisions by treating the division variables as be ordinary (unquantified) variables and computing
the complement of the set considering only the inequalities and equalities and ignoring the division
constraints. This is easy since we maintain the divisions separately from the other constraints. The
final internal representation of the result set will of course again use existential quantification and
division variables to represent divisions, but these will be the same divisions as in the input basic
sets, so we can simply copy the divisions from the input basic sets to the result basic sets.

If 𝐵 involves existential variables, we eliminate them first (Section 4.1.3) to obtain a Presburger
set whose basic sets do not involve any existential variables (but may involve divisions), which we
handle using the algorithm for Presburger sets detailed below.

Presburger sets. We subtract a Presburger set 𝑇 =
⋃

𝑗 𝑇𝑗 from a Presburger set 𝑆 =
⋃

𝑖 𝑆𝑖 by
subtracting the individual basic sets of𝑇 one after another. We have 𝑆 \𝑇 =

⋃

𝑖 (𝑆𝑖 \𝑇 ). We compute
𝑆𝑖 \𝑇 by subtracting each basic set of 𝑇 in succession, i.e., we first compute 𝑆𝑖 \𝑇1; this produces a
union of basic sets, from which we subtract 𝑇2. We keep doing this recursively until there are no
parts of 𝑇 left to subtract, at which point we obtain 𝑆𝑖 \𝑇 . We then compute 𝑆 \𝑇 as the union of
all the 𝑆𝑖 \𝑇 . The complement of a Presburger set 𝐴 is computed as𝑈 \𝐴, where𝑈 is the set of all
points in the space of 𝐴.
If 𝑇 is made of 𝑛(𝑇 ) basic sets and each set has 𝑐 constraints, then the result could have up to

𝑐𝑛 (𝑇 ) basic sets in the worst case, an exponential blowup. Since the subtraction 𝑆𝑖 \𝑇 is performed
recursively, pruning some branches of computation early can make a significant difference. Let
subtract(𝐵, 𝑗) be a recursive function that computes (𝐵 \𝑇𝑗 ) \𝑇𝑗+1 . . ., with the initial call being to
subtract(𝑆𝑖 , 1). At every recursive call, we apply the following two heuristics:

Heuristic 1: If 𝐵 ∩ 𝑇𝑗 contains no rational points, then 𝐵 \ 𝑇𝑗 = 𝐵, so we immediately return
subtract(𝐵, 𝑗 + 1).
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Heuristic 2: Check which constraints of 𝑇𝑗 are rationally redundant given the constraints of 𝐵.
No point in 𝐵 can violate such a constraint, so the basic set corresponding to the region where this
constraint is violated is empty and can be skipped. This can significantly cut down the number of
basic sets produced.

The Simplex implementation can check these properties quite efficiently in practice, as mentioned
in Section 4.1.2. To further minimize the cost of these optimizations, we maintain a Simplex object
corresponding to the set 𝐵. Whenever 𝐵 is modified, we incrementally track the changes in the
Simplex object. When we return from a recursive call, we roll back the Simplex to a snapshot taken
at the start of the call so that the caller can continue using it. This saves the cost of constructing a
Simplex object from scratch for each recursive call.

Performance Analysis. Let 𝑛(𝑆), 𝑐 (𝑆) and 𝑛(𝑇 ), 𝑐 (𝑇 ) be the number of basic sets and the maximum
number of constraints in any basic set in 𝑆 and 𝑇 respectively. The computed representation of
𝑆𝑖 \𝑇 could have up to 𝑛(𝑆)𝑐 (𝑇 )𝑛 (𝑇 ) basic sets in the result. Each result basic set could have up to
𝑐 (𝑆) + 𝑐 (𝑇 )𝑛(𝑇 ) constraints, so the result can have 𝑂 (𝑑 · 𝑛(𝑆) · 𝑐 (𝑇 )𝑛 (𝑇 ) (𝑐 (𝑆) + 𝑐 (𝑇 )𝑛(𝑇 ))) integer
coefficients, making the worst-case runtime exponential in the input size. The heuristics may
improve the worst-case number of basic sets and constraints. However, our implementation uses
the Simplex algorithm which can be exponential in the input size in the worst case, so we do not
gain in terms of asymptotic complexity.
FPL’s implementation of the subtraction algorithm spends around half of its time in Simplex

(Figure 2). The other operations it performs are adding constraints to basic sets, intersections, and
unions. Except for the union, all of these can be accelerated using vectorization in our library-level
transprecision approach.

4.2.4 Sample. In this section, we describe an algorithm to check if Presburger sets are empty and
find a sample point in the set if one exists. To find a sample in a Presburger set, we search each
basic set until we either find a sample or have searched all the basic sets. We look for a sample
in a basic set using a branch and bound algorithm, which computes each variable the range of
rational values it can take. It then recursively tries all integer values within this range. Since this can
take exponential time in the worst case, we use the Generalized Basis Reduction (GBR) algorithm
to transform the variables such that the range of values of the variables in the transformed set
is reduced. It is also possible to implement the sampling operation using the method of cutting
planes [Schrijver 1986]. However, based on our experience with isl, we believe that the GBR-based
approach is likely to have better performance.
The GBR algorithm is only applicable to bounded sets, so for unbounded sets we require a

different algorithm. We check if the set is bounded or unbounded using our Simplex implementation
(Section 4.1.2) and dispatch to the appropriate algorithm.

Bounded Sets. For bounded sets, we use the branch and bound algorithm along with the GBR
algorithm. The branch and bound algorithm checks, for each variable, the maximal and minimal
rational values that this variable can attain. These values can be computed by linear programming,
as discussed in Section 4.1.2. For each possible integer value in this interval, we fix the value of this
variable and recursively continue to the next variable. If at any point, a variable doesn’t have any
possible integer values, we backtrack. If we find an assignment to all the variables, then this is the
required sample point. Otherwise, the set is empty.
The GBR algorithm transforms the variables such that they have a smaller range of possible

values, as mentioned before. The implementation of this algorithm requires linear programming
as well as the ability to incrementally add constraints and roll back changes. This functionality
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is provided by the Simplex implementation. Since GBR doesn’t support unbounded sets, some
additional processing is required in that case.

Unbounded sets. For unbounded sets, we first perform a variable transformation such that a
prefix of the variables ś say, the first 𝑘 variables ś are bounded, and the remaining variables are
unbounded. We then create a bounded set by projecting out the unbounded variables. It can be
shown that no combination of constraints involving unbounded variables can produce a constraint
on the bounded variables, so this can be accomplished by simply discarding all constraints that
have non-zero coefficients for unbounded variables. Finally, we substitute the values found for
the bounded variables back into the original set. This satisfies all the constraints except those that
involve unbounded directions. Since all the bounded variables have been substituted away, this
set is a full-dimensional cone, a cone that is unbounded along every axis. Such a cone is certainly
non-empty; it is only left to find a sample point in the cone.

Full-dimensional cones. We find a sample in the full-dimensional cone by shrinking the cone,
finding a rational point in the cone using Simplex, and rounding this point up to the nearest integer
point. We shrink the cone enough such that a rational point inside the shrunken cone, rounded up
to an integer point, will always lie within the original cone. Since the cone is unbounded along
every direction, this shrinking cannot make it empty. Hence, we will always find a point in the
shrunken cone.
To shrink the cone, we tighten each constraint. Decreasing the constant term of an inequality

tightens it, since for an expression constrained to be greater than or equal to zero, decreasing
the constant term causes previously borderline but valid points to become invalid. We want to
ensure that if (𝑥1, . . . 𝑥𝑛) satisfies the tightened constraint, then this point rounded up satisfies the
original constraint 𝑎1𝑥1 + . . . 𝑎𝑛𝑥𝑛 + 𝑐 ≥ 0. After rounding up, the new value of 𝑥𝑖 will be in the
range [𝑥𝑖 , 𝑥𝑖 + 1]. (In fact, it can never be 𝑥𝑖 + 1, but it is more convenient to work with this closed
interval.) In terms of satisfying the constraint, the worst case occurs when 𝑥𝑖 increases by one for
all 𝑖 such that 𝑎𝑖 is negative and all the other 𝑥𝑖 stay unchanged. Let 𝑑 be the sum of the magnitudes
of the negative 𝑎𝑖 . The rounded point surely satisfies the original constraint if the original rational
point satisfied 𝑎1𝑥1 + . . . + 𝑎𝑛𝑥𝑛 + 𝑐 − 𝑑 ≥ 0, so we use this as the tightened constraint.

Performance Analysis. The algorithm for integer linear programming based on the Generalized
Basis Reduction algorithm is known to run in polynomial time when the number of dimensions is
fixed, if linear programming is implemented using a polynomial-time algorithm. Our implementa-
tion uses the Simplex algorithm, which is efficient in practice even though it is known to take up to
exponential time in the worst case.
FPL’s implementation of the emptiness check algorithm spends 62% of its runtime in Simplex

and Generalized Basis Reduction, and 22% of its time in computing and applying the transform used
in the case of unbounded sets to make a prefix of the variables unbounded and the rest bounded.
Applying the transform amounts to a matrix multiplication, which is non-trivial to vectorize.
Computing the transform is done essentially using a series of column operations, similar to bringing
a matrix to column echelon form, which could be vectorized if the matrix is stored in column-major
form. The Simplex algorithm also benefits greatly from vectorization, as mentioned earlier.

4.2.5 Equality. Let 𝑆 and 𝑇 be two Presburger sets. 𝑆 = 𝑇 iff both 𝑆 ⊆ 𝑇 and 𝑇 ⊆ 𝑆 , and 𝑆 ⊆ 𝑇 iff
𝑆 \𝑇 is empty. Therefore, 𝑆 is equal to 𝑇 iff both 𝑆 \𝑇 and 𝑇 \ 𝑆 are empty.

4.2.6 Coalesce. The coalescing algorithm [Verdoolaege 2015] is a heuristic that, given a Presburger
set made up of many basic sets, tries to find a simplified representation using as few basic sets as
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C
B

BA

D
Fig. 3. The union of the basic sets 𝐴, 𝐵, and 𝐶 is in fact itself a convex object and can be represented as a

single basic set. Computing a representation of 𝐷 = 𝐴 ∪ 𝐵 as a basic set is straightforward, but doing so for

𝐶 ∪ 𝐷 requires the more involved wrapping subroutine.

possible. Since the running time of many algorithms depends on the number of basic sets, this can
be a significant optimization.

Consider the Presburger set 𝑆 = 𝐴∪𝐵∪𝐶 as in Figure 3. The coalescing algorithm considers every
pair of basic sets in the union and tries to coalesce them into a single basic set. In our example, it is
able to detect that 𝐴 ∪ 𝐵 is convex. In this case, we obtain a representation of this union as a basic
set by simply making a basic set 𝐷 with all the constraints in 𝐴 and 𝐵 except those corresponding
to the sides that are adjacent to the other set. This gives us the simplified representation 𝑆 = 𝐶 ∪𝐷 .

In fact,𝐶 ∪𝐷 is also convex, but it is not possible to represent this union as a basic set by simply
selecting a subset of the constraints of 𝐶 and 𝐷 .

y - x + 4 ≥ 0y - 1 ≥ 0

D 2y - x + 3 ≥ 0

Fig. 4. The wrapping algorithm computes the required constraint by interpolating between a constraint that

holds for all points in 𝐷 , 𝑦 − 𝑥 + 4 ≥ 0, and one that does not, 𝑦 − 1 ≥ 0. In this case, an equal mix of both the

constraints, (𝑦 − 𝑥 + 4) + (𝑦 − 1) ≥ 0, i.e., 2𝑦 + 3 ≥ 𝑥 is the required constraint.

Wrapping. To compute the constraint wrapping 𝐶 and 𝐷 together, we interpolate between a
constraint that holds for all points in 𝐷 and one that does not hold for all points in 𝐷 , mixing the
two constraints in the right proportion to produce the sharpest constraint that holds for 𝐷 . In the
example (Figure 4), the constraint 𝑦 − 𝑥 + 4 ≥ 0 holds for 𝐷 and 𝑦 − 1 ≥ 0 does not hold for all
points in 𝐷 . The details of how we choose the constraints to interpolate between are out of the
scope of this section and can be found in the original paper. The required constraint, shown by the
black dashed line, is given by interpolating between the two constraints in equal proportion to get
(𝑦 − 𝑥 + 4) + (𝑦 − 1) ≥ 0, i.e., 2𝑦 − 𝑥 + 3 ≥ 0.

Performance Analysis. The coalesce algorithm compares every pair of basic sets, so the number
of times it uses linear programming is quadratic in the number of basic sets. Since we implement
linear programming using the Simplex algorithm, its overall time complexity is exponential. FPL’s
implementation of the coalesce algorithm spends 47% of its runtime in Simplex (Figure 2).

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 162. Publication date: October 2021.



FPL: Fast Presburger Arithmetic through Transprecision 162:15

5 PRESBURGER SETS IN LLVM ANDMLIR

We aim to support Presburger arithmetic natively in LLVM/MLIR by contributing our work to the
LLVM repositories. Large parts of FPL have already been upstreamed to LLVM’sMLIR project, where
the library is deeply integrated into the compiler. For example, MLIR uses a class IntegerSet,
to represent the basic sets that correspond to the IR that the compiler is operating on. These
IntegerSet objects are quite close to the IR and are represented as a kind of expression tree.
To perform analyses on these sets, we require the set to be represented as a list of constraints
(Section 2). MLIR provides support for "flattening" these IntegerSet expression trees into what
are called FlatAffineConstraints, which represent basic sets in the form we require.
We have upstreamed support for Presburger sets, which are unions of basic sets. We provide

support for a number of standard operations on integer sets in MLIR, including union, intersect,
subtract, complement, equality checks, and integer emptiness checks. This support is provided
directly within MLIR, and operates natively on the objects that MLIR uses to perform analysis.
These objects can readily be generated from the IR, providing a smooth flow from the compiler to
the analysis operations provided by FPL.
We fully support divisions in all these operations; our next steps will be to provide support

for coalescing and arbitrary existentially quantified variables. Finally, we will explore with the
LLVM community how to upstream performance optimizations such as SIMDization as well as
transprecision computing. In particular, we will need to replace our use of SIMD intrinsics with a
more production-quality and portable SIMD implementation. Also, we need to find an alternative
way to implement transprecision computing that works in LLVM’s default configuration, where
exceptions are disabled. While optimizing our implementation will require further thought, we
expect that the upcoming availability of a Presburger library within MLIR will make it significantly
easier to develop new Presburger-based tools in the MLIR ecosystem.

6 EVALUATION

We evaluate FPL on a new benchmark suite that we derive from real-world compilers. We present
the first comprehensive suite of Presburger arithmetic test cases representative of the computations
in polyhedral compilers. We then evaluate both our correctness and performance against the
state-of-the-art and perform a detailed analysis of the performance properties of FPL.

subtract empty coalesce eliminate complement equal intersect union

103

105

Count polly ppcg pluto

Fig. 5. Distribution of test cases for each operation extracted from each compiler.

6.1 Presburger Set Benchmarks

Our benchmark suite characterizes the usage of Presburger arithmetic in polyhedral compilers and
provides a comprehensive set of runtime benchmarks suitable for performance evaluating a library
for Presburger set arithmetic. To the best of our knowledge, there is not yet any benchmark suite
that comprehensively characterizes the problem instances that are typical in polyhedral compilation.
We create the benchmark suite by running Polly3 [Grosser et al. 2012], the PPCG GPU compiler

3We use commit bfdafa32 from https://github.com/llvm/llvm-project.
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Fig. 6. 90% of sets occurring in our benchmark suite have at most eight dimensions, at most eight constraints,

and at most one basic set. 90% of constraint coefficients are zero, and 99% fit in 9 bits.

0.08.2 [Verdoolaege et al. 2013], and Pluto4 [Bondhugula and Ramanujam 2007] on Polybench
4.1 [Pouchet 2012] and extracting data on the Presburger set operations they perform. In particular,
we extract the inputs and outputs for core operations on Presburger sets: union, intersect, subtract,
complement, coalesce, equality checks, emptiness checks, and eliminating existentials (Figure 5).
These operations cover the various tasks that are typical in polyhedral compilation, such as SCoP
construction, dependence analysis, scheduling, and AST construction. Our benchmark suite hence
provides a faithful representation of Presburger arithmetic as used in polyhedral compilation.

In total, we extract 1,140,039 test cases. Out of these, there are 10,800 coalesce test cases involving
sets of rational points. While these could be supported without major changes to the architecture
or data structures, we currently only support sets of integer points. As such, we do not consider
these cases. This leaves us with 1,129,239 test cases: 111,368 from Polly, 305,041 from PPCG, and
712,830 from Pluto (Figure 5).

We characterize the properties of typical Presburger sets occurring in polyhedral compilers.
The sets are typically small in terms of dimensionality, number of constraints, number of basic
sets, and size of coefficients. The median dimensionality (Figure 6a) of the sets we consider is
only 8 dimensions, with 99.9% of sets having less than 20 dimensions. The number of constraints
(Figure 6b) is, excluding a large number of empty and universe zero-constraint sets, typically in
the low tens and always below 200. 90% of Presburger sets (Figure 6c) have only one basic set,
and 99% of constraint coefficients fit within 9 bits. In fact, 90% of the coefficients are zero. These
characteristics indicate that optimizing for low dimensionality and small integer coefficients is
likely to prove fruitful. The low dimensionality indicates that we can exploit SIMD parallelism with
up to 32 lanes. Most of the operations are embarrassingly parallel across basic sets. However, since
most tests have zero or one basic sets, we cannot exploit this coarse-grained parallelism very well.
As a result, GPUs are likely not a good target for FPL, since we cannot utilize all the multiprocessors.
Rather, the local parallelism offered by CPU SIMD instructions is well-suited to our application.

4We use commit 5b13ddcc from https://github.com/bondhugula/pluto.
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Table 2. Test distribution across operations

and kinds of sets. Subtract, complement and

equal never receive inputs with existential

variables, possibly because these are always

eliminated before being passed to these op-

erations.

Ordinary Division Existential

420,995 1,252 24

290,109 30,236 56

55,751 343 0

4,305 0 0

46,537 16,925 9

1,562 1 0

258,006 520 0

1596 946 66

Union

Intersect

Subtract

Complement

Coalesce

Equal

Empty

Eliminate

Table 3. FPL computes correct results on all

1,129,239 tests (green). Some set types never

occur for certain operations (grey).

Ordinary Divisions Existentials

100% 100% 100%

100% 100% 100%

100% 100% n/a

100% n/a n/a

100% 100% 100%

100% 100% n/a

100% 100% n/a

100% 100% 100%

We find that the test set contains 50,223 test cases involving division variables, indicating that
this aspect of Presburger arithmetic sees significant use in polyhedral compilation and that the
test set has good coverage for it. On the other hand, no sets with existential variables occur for the
subtract, complement, and equal operations (Table 2), possibly because these compilers eliminate
them before passing them to these operations. In order to catch any sets where this may have
occurred, we explicitly extract all the sets from which Pluto and PPCG eliminate existentials.5

Overall, the benchmarks exercise every aspect of the algorithmic foundations. The basic algo-
rithms for union, intersect, subtract, empty and coalesce are tested by tens or hundreds of thousands
of tests. There is comprehensive coverage of the support for division variables, as mentioned before.
In particular, the 30,236 intersect test cases containing divisions provide good coverage for the
functionality for bringing sets to a common space (Section 4.1.1). By also extracting test cases
for eliminating existentials, we create a comprehensive benchmark and test suite for Presburger
arithmetic as used in polyhedral compilation.

6.2 Correctness

We evaluate the correctness of our library on the benchmark suite across different operations
and Presburger set types. For our experiments (Table 3) we use isl, a state-of-the-art library for
Presburger arithmetic, as an oracle.

We find that our algorithm produces correct results for all 1,129,239 test cases for all operations
demonstrating the robustness of FPL’s implementations of these operations on a large real-world
test set.

6.3 Performance

We analyze the performance of the individual operations extracted from different compilers, com-
paring our overall performance against isl. We then investigate the suitability of transprecision
computing to workloads in polyhedral compilers, as well as the overhead incurred by our approach

5For technical reasons, we did not extract test cases for eliminating existentials from Polly.
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Fig. 7. Comparison of the representation sizes of output sets in FPL versus that in isl. We visualize the

geometric mean of the ratio of the number of basic sets and constraints in FPL’s output to that in isl’s output.

We find that in the fourth (worst-performing) quartile of test cases, the eliminate and coalesce operations

have an output representation with a geomean increase of 1.45x and 1.3x respectively in the number of

constraints. The remaining operations have output sizes comparable to isl.

to transprecision computing. Finally, we evaluate the design of our library by investigating memory
allocations as well as cache behavior.

Representation size of output sets. We evaluate the performance of our library in comparison with
isl, a state-of-the-art library for Presburger arithmetic. FPL has an order of magnitude speedup
over isl in its default configuration which uses GMP for integer arithmetic. However, this is in part
because isl has some expensive heuristics that exist solely to simplify the representations of the
output sets. For example, this results in a reduction in the number of constraints in isl’s output
by 1.57x on average (geomean) relative to FPL. Since we have not yet performed a cost-benefit
analysis of such expensive heuristics, we do not currently implement them. In order to make
an apples-to-apples comparison and prevent ourselves from gaining an unfair advantage on our
single-operation benchmark, we disable such output simplifications in isl’s implementations of
union, subtract, intersect, and complement when we measure runtimes.
Figure 7 visualizes the average (geometric mean) growth by quartile in the number of basic

sets and constraints in our output as compared to isl with its heuristics removed. The emptiness
checks and equality checks are not shown since they produce boolean output. When both isl and
FPL have a trivial output having zero basic sets or constraints, the ratio is considered to be 1. The
figure does not include test cases where isl produces a trivial output but FPL does not, since the
ratio is undefined in that case (it involves division by zero). Such cases form around 18% of the
subtraction outputs and less than 2% of each of the remaining operations. We believe that cases
in subtraction are a result of heuristics that we did not remove because doing so would make isl
slower, resulting in an unfair comparison; these heuristics both improve efficiency and improve
the size of the representation.
We see that our output is of comparable size to isl in all other operations except eliminate

and coalesce. In the worst-performing quartile, the eliminate and coalesce operations have a
geomean increase of 1.45x and 1.3x respectively in the number of constraints. This is because we
do not remove the additional heuristics from these operations. We do not remove heuristics in
isl’s functionality for eliminating existentials since it appears to be non-trivial to do so in isl’s
design. Moreover, we do not remove any heuristics from isl’s implementation of coalescing since
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Fig. 8. Speedup of our library over isl in terms of total runtime per operation. The overall* speedup does not

include eliminate and coalesce since our output representation sizes are not comparable to isl (Figure 7). We

see an overall speedup of 5.4x over isl with GMP and 3.6x over isl with element-transprecision.

the purpose of this operation is to simplify the representations of sets. Since our output sizes
for eliminate and coalesce are not comparable to isl, we do not include these operations when
calculating our overall speedup (Figure 8).

(a) FPL (library-TP) (b) isl (element-TP) (c) isl (GMP)

empty
coalesce
subtract
complement
intersect
union
eliminate
equal

Fig. 9. Fraction of total runtime spent in each operation by (a) FPL with library-level transprecision, (b) isl

with element-level transprecision, and (c) isl with GMP. The time spent in complement and equality checks is

negligible. Over half of isl’s total runtime is in emptiness checks.
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Fig. 10. Speedup of FPL with transprecision over FPL running on GMP. We find that FPL with transprecision

has a 15x overall* speedup over FPL running with only GMP.

Experimental setup. We run all the test cases in succession, five times each, and consider the
median execution time of each test case. Since polyhedral compilers typically run many operations
in succession, this is a realistic execution environment. We execute all the benchmarks on a single
thread on a test system having an Intel(R) Core(TM) i7-1065G7 CPU @ 1.30GHz with an 8 MiB L3
cache and 16 GB of RAM. In particular, our system has support for AVX-512 wide vector instructions,
which FPL is able to exploit. We ran all experiments with the CPU frequency locked.
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Speedups. FPL shows an overall speedup of 5.4x in terms of total runtime over isl running in
its default configuration with GMP-based integers and 3.6x over isl enhanced with element-level
transprecision (Figure 8). This metric is of particular interest for compilers, which run many
operations in sequence before returning anything to the user. In this setting, the total runtime of
the operations is what is visible to the user, rather than the time taken on individual test cases. We
are faster than isl with GMP on all operations except union, possibly due to isl’s usage of copy on
write with reference-counted sets (Section 4.2.1).

In the emptiness check operation, we show speedups of 6.2x over isl with GMP and 4.1x over isl
with element-level transprecision. The emptiness check has a boolean output and a large fraction
of isl’s total runtime is spent in this operation (Figure 9). Thus, we achieve a speedup of 6.2x on a
crucial operation where output simplifications certainly do not affect the result, and one that forms
over half of isl’s total runtime on the benchmark suite.

Comparing FPL running with full transprecision and FPL running on only GMP, we found that
FPL with transprecision has a speedup of 15x (Figure 10) over FPL running with arbitrary precision
arithmetic. Thus, transprecision computing is highly effective for our use case.

10 102 103 104 105 106
0

2

4

6

Speedup over isl (GMP)

1.03 1.02

4.36 4.80
5.90

6.78

1.00 0.99 1.16 1.34 1.61 1.67

isl (element-TP) FPL

Fig. 11. We categorize the test cases into buckets according to the order of magnitude of their runtime in

isl (GMP). We find that the speedup of FPL over isl (GMP) for fast-running test cases is negligible but the

speedup for longer running test cases is above 4x. There are nine test cases for subtraction taking tens of

millions of cycles, on which we have a speedup of 116x; this outlier bucket is not shown.
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Fig. 12. So as to understand the relative importance of each bucket above, we also measure the total time

spent by isl (GMP) in each bucket. We find that the 104, 105, and 106 buckets together account for over 90%

of the total runtime.

Our speedups are derived from the longer running test cases. Categorizing the test cases by
the order of magnitude of their runtime in isl (GMP), we find that FPL’s speedup over isl (GMP)
is negligible on the test cases that run in tens or hundreds of cycles but above 4x on the longer
running test cases whose order of magnitude of runtime is in the thousands to tens of millions of
cycles (Figure 11); these test cases account for over 90% of the total runtime of isl (GMP) (Figure 12).
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We expect that the demonstrated performance of FPL will motivate the future implementation of
higher-level polyhedral compilation algorithms using FPL. We are optimistic that such higher-level
algorithms will benefit from the fast performance that FPL provides for Presburger set operations.

65.8%

32.2%

(a) FPL

74.8%

24.7%

(b) isl (element-TP)

78.0%

21.5%

(c) isl (GMP)

int16_t, 32 cols
int64_t
int128_t

Fig. 13. Total runtime broken down according to the precision level FPL needs to compute the results. FPL

does not require arbitrary-precision arithmetic for any of the test cases in the benchmark suite. isl spends

over 74% of its time on cases that FPL can compute using just int16_t and matrices with at most 32 columns.

isl spends over 99% of its time on test cases where int64_t suffices.

FPL (128-bit, unchecked) FPL (64-bit, unchecked) FPL (16-bit, unchecked)
0.0

0.5

1.0

Overall* speedup over FPL (transprecision)

0.64
0.86

1.08

Fig. 14. Overall* speedup of FPL running at different precision levels without overflow checks, as compared

to FPL with full transprecision. The runs with 16-bit and 64-bit precision were run and compared only on the

subset of test cases that can be computed at these precision levels without overflow. Running with 16-bit

integers and no overflow checks results in only a 1.08x speedup over FPL with transprecision, indicating that

the overhead of transprecision computing is low.

Applicability of transprecision computing. We have investigated the distribution of the coefficient
values in the input sets and found that these are usually small (Figure 6d). However, this is not
sufficient for transprecision computing to be effective since ś in theory ś even small constraints
could produce very large integer values during computations performed in, e.g., Simplex. To obtain
a better picture of the applicability of transprecision computing to polyhedral compiler workloads,
we evaluate what fraction of the total runtime is spent in test cases that can be computed using only
16-bit integer and 32-columns, which is the lowest precision mode in FPL (Section 3.3). We also
check what fraction of test cases require 64-bit integers, 128-bit integers, and arbitrary-precision
integers.

We find that over 99% of isl’s runtime is spent in test cases that FPL computes using only 64-bit
integers, and over 74% is spent in cases that FPL can run with just 16-bit integers and 32-column
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matrices (Figure 13). Moreover, arbitrary-precision arithmetic is never needed. Transprecision
computing is therefore highly applicable to typical workloads in polyhedral compilers.

Comparison to fixed precision without overflow checks. We tried running FPL without overflow
checks and with a fixed precision level on the subset of test cases that can be run at that precision.
For example, running FPL with only 16-bit integers and no overflow checks on the corresponding
subset results in a speedup of only 1.08x (Figure 14) over FPL with transprecision. Since running
with unchecked 16-bit integers provides a roofline on the possible performance on the subset of
test cases that can be run using 16-bit integers, this indicates that FPL is very close to the roofline,
and that the overhead of transprecision computing is quite low.
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Count pc50 pc90

Fig. 15. The distribution of the number of pivots performed by our implementation of the Simplex algorithm

when FPL is run on our benchmark suite. We find that the maximum number of pivots performed on any

single linear program is 115, which is quite low. As such, our baseline implementation of the Simplex algorithm

suffices to solve the linear programs arising in polyhedral compilation.
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Fig. 16. We find that FPL makes 40% fewer calls to memory allocation primitives than isl, demonstrating the

advantage of our library design.

Number of pivots. We investigated the number of pivot operations required by Simplex to solve
the linear programs that arise when FPL is run on our benchmark. King et al. [2014] explored a
hybrid approach for leveraging linear programming in SMT solvers, where they used an internal
exact solver for small cases and called out to an external commercial solver for larger cases that
took more than 200 pivots to solve. Such solvers use complex pivoting rules and other optimizations,
enabling them to tackle more challenging cases. It is therefore interesting to see how many pivots
are required to solve a typical linear program that arises in our use case; if some cases require a
large number of pivots, then it may be useful to call out to such a solver from FPL.
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Fig. 17. Simulated cache performance under Valgrind in a two-level cache hierarchy. We find that FPL accesses

the last level cache 34% fewer times than isl. Additionally, FPL has 11% fewer last level cache misses, and

therefore has 11% fewer DRAM accesses.

Our implementation of the Simplex algorithm supports dynamically adding constraints as well
as backtracking. We consider that whenever we backtrack and add new constraints, we are solving
a new linear program. We find that the maximum number of pivots needed to solve any linear
program is only 115 (Figure 15), so our straightforward baseline implementation of the Simplex
algorithm is likely sufficient for our use case.

Size of the library. We looked into the effect of our transprecision approach on binary size. Since
our library is header-only, the size of our benchmark runner binary’s object file provides a good
indication of the size of the library. The size of the binary object itself is 1870 KiB when using full
transprecision as compared to 570 KiB when using only GMP. The size of the object file plus the
dependencies for GMP and overflow checks is 3.47 MiB when using full transprecision and 1.95
MiB when using only GMP. Compared to the size of e.g. the MLIR optimizer mlir-opt, which is of
size 62 MiB, the size of the library is quite minimal.

Memory behavior. We investigate the benefits of our library design as compared to isl by com-
paring the number of calls we make to memory allocation primitives. We find that FPL makes
40% fewer memory allocation calls than isl (Figure 16). We also tried running FPL and isl under
Valgrind [Nethercote and Seward 2007] to investigate cache behavior under a simulated two-level
cache hierarchy. The cache configuration resembles that of the i7-1065G7 CPU mentioned earlier.
The configuration has an 8-way associative, 32KiB level 1 instruction cache; a 12-way associative,
48KiB level 1 data cache; and a 16-way associative 8MiB last level cache. We find that FPL accesses
the last level cache 34% fewer times than isl, and accesses DRAM 11% fewer times (Figure 17). These
results demonstrate the advantages of our library design in terms of memory behavior.

7 RELATED WORK

Many of the algorithms used in this work are well-established in the domain of mathematical
optimization. Our library includes an implementation of the Generalized Basis Reduction (GBR)
algorithm of Lovász and Scarf [1992], the Parametric Integer Programming (PIP) algorithm of
Feautrier [1988], and an implementation of the Simplex algorithm based on the Simplex module of
Simplify [Detlefs et al. 2005]. Simplify is a system for automatic theorem proving that supports
linear programming and limited heuristics for integer linear programming. Its Simplex module
supports linear programming with incremental computation of results while adding and removing
constraints, a crucial building block in our implementation of GBR and PIP. The GBR algorithm
can solve integer linear programming problems having a fixed number of variables in polynomial
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time. We use this for emptiness checks on basic sets, as the two problems are equivalent. The PIP
algorithm was developed to support sets with symbolic variables, a requirement arising in program
analysis. We use it to eliminate existential variables (Section 4.1.3). The big M method used to
support negative-valued variables in PIP is also well-known in the linear programming literature
[Bazaraa and Jarvis 1977].
Several math libraries that reason about rational polyhedra, integer polyhedra, and Presburger

sets have been built earlier on top of these and similar algorithms. The abstract interpretation
community has been developing a range of libraries that operate on convex rational polyhedra and
even less generic objects. These libraries include Apron [Jeannet and Miné 2009], PPL [Bagnara
et al. 2008], and Elina [Singh et al. 2015]. The Omega project [Kelly et al. 1996] was the first
library dedicated to polyhedral compilation. It contributed the Omega check, an integer emptiness
algorithm. Omega uses a dual representation of vertex and integer polytopes to represent Presburger
sets. Today, Omega is unfortunately unmaintained. Polylib [Loechner 1999] initially allowed
reasoning about non-convex sets of rational polyhedra and over time gained support for some
integer algorithms, also using a dual representation of vertex and constraint polytopes. Polylib
5.22.5 provides macros that allow users to change the element type of the polylib data structures at
compile time and it also has a hand-crafted exception system that Polylib uses to track overflows
and free data structures in case an exception occurs, but Polylib does neither use SIMDization
nor can it automatically transition from low-precision to higher-precision types. The R-stream
compiler [Meister et al. 2011] provides Jolylib, a polyhedral constraint library implemented in
Java, but to our understanding, the details of this library have not been publicly discussed. The
integer set library (isl) [Verdoolaege 2010] is today the state-of-the-art library for Presburger
arithmetic and provides support for full Presburger arithmetic, including existential constraints.
The isl project was the first to recognize that a purely constraint-based internal representation is
well-suited for the kinds of Presburger sets that arise during program analysis. Also, it was the
first to combine algorithms such as GBR, PIP, and Simplify to enable effective reasoning about
existential dimensions in Presburger sets, to the best of our knowledge. isl introduced the coalescing
algorithm [Verdoolaege 2015] and was our source for the subtraction algorithm as well as the usage
of the big M method to support negative variables in PIP. The design of our library follows the
algorithmic structure of isl and many of the data structures and design choices we used follow isl ś
some were originally crafted for isl while others already appeared in earlier libraries such as Omega
or Polylib. By documenting the full set of algorithms used in FPL together with a performance
analysis of potential design choices, we aim to facilitate future contributions to FPL. The isl library
initially only supported GMP as an integer type. Grosser et al. [2020] later added element-wise
transprecision computing across the full library and presented a prototype that exploited a simplex
solver optimized with matrix-wise transprecision computing. In contrast, FPL uses library-level
transprecision computing across the full Presburger library. Finally, the verified polyhedral library
(VPL) [Fouilhe 2015] is a formally verified implementation of a library for polyhedral arithmetic in
OCaml that is similar to isl and was developed around the same time. It too uses a constraint-only
representation. However, it does not support reasoning about integrality or existential dimensions.

8 CONCLUSION

We presented FPL, a new library for Presburger arithmetic built from the ground up with support
for transprecision computing at the library level. We showed how FPL’s modern design results in a
40% reduction in calls to memory allocation primitives. For the first time, we provided a complete
documentation and performance analysis of the algorithmic foundations underlying a Presburger
library. We evaluated our library against a newly developed benchmark suite characterizing the
set operations and inputs that arise in real-world polyhedral compilation, finding that our library
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shows an aggregate 5.4x speedup in terms of total runtime over isl running with GMP and a
speedup of 3.6x over isl enhanced with an element-level transprecision optimization. We expect
that the availability of a well-documented and fast Presburger library will accelerate the adoption
of polyhedral compilation techniques in production compilers.

9 DATA AVAILABILITY STATEMENT

We have made available a replication package [Pitchanathan et al. 2021] that includes a Docker
image with the necessary toolchains, data, sources and scripts to reproduce the main results from
our evaluation (Section 6). The package also includes our benchmark for Presburger arithmetic as
used in polyhedral compilation.
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