
spcl.inf.ethz.ch

@spcl_eth

T. HOEFLER

Extreme-Scale Graphs
Invited talk at Supercomputing Frontiers and Innovation 2019, Warsaw, Poland

Special thanks to my student Maciej Besta

With contributions from Heng Lin, Xiaowei Zhu, Bowen Yu, Xiongchao Tang, Wei Xue, Wenguang Chen, Lufei
Zhang, Xiaosong Ma, Xin Liu, Weimin Zheng, and Jingfang Xu and others at SPCL and Tsinghua University

spcl.inf.ethz.ch

@spcl_eth

Extreme-Scale Graphs

2

spcl.inf.ethz.ch

@spcl_eth

Extreme-Scale Graphs

2

spcl.inf.ethz.ch

@spcl_eth

Extreme-Scale Graphs

Why do we care?

2

spcl.inf.ethz.ch

@spcl_eth

Extreme-Scale Graphs

Why do we care?

Useful model

2

spcl.inf.ethz.ch

@spcl_eth

Extreme-Scale Graphs

Why do we care?

Social networks

Useful model

2

spcl.inf.ethz.ch

@spcl_eth

Extreme-Scale Graphs

Why do we care?

Social networks

Engineering networksUseful model

2

spcl.inf.ethz.ch

@spcl_eth

Extreme-Scale Graphs

Why do we care?

Social networks

Engineering networksUseful model

Biological networks

2

spcl.inf.ethz.ch

@spcl_eth

Extreme-Scale Graphs

Why do we care?

Social networks

Engineering networksUseful model

Biological networks
Physics, chemistry

2

spcl.inf.ethz.ch

@spcl_eth

Extreme-Scale Graphs

Why do we care?

Social networks

Engineering networksUseful model

Biological networks
Physics, chemistry

Communication networks

2

spcl.inf.ethz.ch

@spcl_eth

Extreme-Scale Graphs

Why do we care?

Social networks

Engineering networksUseful model

Biological networks
Physics, chemistry

Communication networks

Machine learning

2

spcl.inf.ethz.ch

@spcl_eth

Extreme-Scale Graphs

Why do we care?

Social networks

Engineering networksUseful model

Biological networks
Physics, chemistry

Communication networks

...even philosophy☺

Machine learning

2

spcl.inf.ethz.ch

@spcl_eth

Practice of Extreme-Scale Graph Processing

Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds, SC18, Gordon Bell Finalist
3

spcl.inf.ethz.ch

@spcl_eth

Practice of Extreme-Scale Graph Processing

Out-of-core

In-memory

Single-node Multi-node

Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds, SC18, Gordon Bell Finalist
3

spcl.inf.ethz.ch

@spcl_eth

Practice of Extreme-Scale Graph Processing

Out-of-core

In-memory

Single-node Multi-node

Memory limited

LigraGalois

Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds, SC18, Gordon Bell Finalist
3

spcl.inf.ethz.ch

@spcl_eth

Practice of Extreme-Scale Graph Processing

Out-of-core

In-memory

Single-node Multi-node

Memory limited

LigraGalois

Chaos

Graphene

MosaicG-Store

Too slow
(> 20 mins per PageRank iteration on 1-trillion-edge graph)

Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds, SC18, Gordon Bell Finalist
3

spcl.inf.ethz.ch

@spcl_eth

Practice of Extreme-Scale Graph Processing

Out-of-core

In-memory

Single-node Multi-node

Giraph

PowerGraph

PowerLyraGraM

Gemini

Memory limited

LigraGalois

Chaos

Graphene

MosaicG-Store

Too slow
(> 20 mins per PageRank iteration on 1-trillion-edge graph)

Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds, SC18, Gordon Bell Finalist
3

spcl.inf.ethz.ch

@spcl_eth

Giraph, 2015, Real-world

GraM, 2015, Synthetic

Chaos, 2015, Synthetic

G-Store, 2016, Synthetic

Graphene, 2017, Synthetic

Mosaic, 2017, Synthetic

ShenTu, Real-world

ShenTu, Synthetic

1

10

100

1000

10000

100000

1 4 16 64

Ti
m

e
fo

r
o

n
e

Pa
ge

R
an

k
It

er
at

io
n

Number of graph edges (trillion)

Bigger

Fa
st

e
r

Practice of Extreme-Scale Graph Processing

Out-of-core

In-memory

Single-node Multi-node

Giraph

PowerGraph

PowerLyraGraM

Gemini

Memory limited

LigraGalois

Chaos

Graphene

MosaicG-Store

Too slow
(> 20 mins per PageRank iteration on 1-trillion-edge graph)

Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds, SC18, Gordon Bell Finalist
3

spcl.inf.ethz.ch

@spcl_eth

Giraph, 2015, Real-world

GraM, 2015, Synthetic

Chaos, 2015, Synthetic

G-Store, 2016, Synthetic

Graphene, 2017, Synthetic

Mosaic, 2017, Synthetic

ShenTu, Real-world

ShenTu, Synthetic

1

10

100

1000

10000

100000

1 4 16 64

Ti
m

e
fo

r
o

n
e

Pa
ge

R
an

k
It

er
at

io
n

Number of graph edges (trillion)

Bigger

Fa
st

e
r

Practice of Extreme-Scale Graph Processing

Out-of-core

In-memory

Single-node Multi-node

Giraph

PowerGraph

PowerLyraGraM

Gemini

Memory limited

LigraGalois

Chaos

Graphene

MosaicG-Store

Too slow
(> 20 mins per PageRank iteration on 1-trillion-edge graph)

ShenTu

Giraph, 2015, Real-world

GraM, 2015, Synthetic

Chaos, 2015, Synthetic

G-Store, 2016, Synthetic

Graphene, 2017, Synthetic

Mosaic, 2017, Synthetic

ShenTu, Real-world

ShenTu, Synthetic

1

10

100

1000

10000

100000

1 4 16 64

Ti
m

e
fo

r
o

n
e

Pa
ge

R
an

k
It

er
at

io
n

Number of graph edges (trillion)

Fa
st

e
r

Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds, SC18, Gordon Bell Finalist
3

spcl.inf.ethz.ch

@spcl_eth

Giraph, 2015, Real-world

GraM, 2015, Synthetic

Chaos, 2015, Synthetic

G-Store, 2016, Synthetic

Graphene, 2017, Synthetic

Mosaic, 2017, Synthetic

ShenTu, Real-world

ShenTu, Synthetic

1

10

100

1000

10000

100000

1 4 16 64

Ti
m

e
fo

r
o

n
e

Pa
ge

R
an

k
It

er
at

io
n

Number of graph edges (trillion)

Bigger

Fa
st

e
r

Practice of Extreme-Scale Graph Processing

Out-of-core

In-memory

Single-node Multi-node

Giraph

PowerGraph

PowerLyraGraM

Gemini

Memory limited

LigraGalois

Chaos

Graphene

MosaicG-Store

Too slow
(> 20 mins per PageRank iteration on 1-trillion-edge graph)

ShenTu

Giraph, 2015, Real-world

GraM, 2015, Synthetic

Chaos, 2015, Synthetic

G-Store, 2016, Synthetic

Graphene, 2017, Synthetic

Mosaic, 2017, Synthetic

ShenTu, Real-world

ShenTu, Synthetic

1

10

100

1000

10000

100000

1 4 16 64

Ti
m

e
fo

r
o

n
e

Pa
ge

R
an

k
It

er
at

io
n

Number of graph edges (trillion)

Fa
st

e
r

largest published
graph processing run

Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds, SC18, Gordon Bell Finalist
3

spcl.inf.ethz.ch

@spcl_eth

How large are extreme-scale graphs today?

By Cmglee, CC Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds, SC18, Gordon Bell Finalist
4

spcl.inf.ethz.ch

@spcl_eth

How large are extreme-scale graphs today?

By Cmglee, CC Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds, SC18, Gordon Bell Finalist
4

spcl.inf.ethz.ch

@spcl_eth

How large are extreme-scale graphs today?

By Cmglee, CC Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds, SC18, Gordon Bell Finalist
4

spcl.inf.ethz.ch

@spcl_eth

How large are extreme-scale graphs today?

By Cmglee, CC Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds, SC18, Gordon Bell Finalist
4

spcl.inf.ethz.ch

@spcl_eth

How large are extreme-scale graphs today?

By Cmglee, CC Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds, SC18, Gordon Bell Finalist
4

spcl.inf.ethz.ch

@spcl_eth

How large are extreme-scale graphs today?

By Cmglee, CC Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds, SC18, Gordon Bell Finalist
4

spcl.inf.ethz.ch

@spcl_eth

How large are extreme-scale graphs today?

By Cmglee, CC Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds, SC18, Gordon Bell Finalist
4

spcl.inf.ethz.ch

@spcl_eth

How large are extreme-scale graphs today?

By Cmglee, CC Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds, SC18, Gordon Bell Finalist
4

spcl.inf.ethz.ch

@spcl_eth

How large are extreme-scale graphs today?

By Cmglee, CC Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds, SC18, Gordon Bell Finalist
4

spcl.inf.ethz.ch

@spcl_eth

How large are extreme-scale graphs today?

By Cmglee, CC Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds, SC18, Gordon Bell Finalist
4

spcl.inf.ethz.ch

@spcl_eth

How large are extreme-scale graphs today?

1 billion!

By Cmglee, CC Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds, SC18, Gordon Bell Finalist
4

spcl.inf.ethz.ch

@spcl_eth

How large are extreme-scale graphs today?

1 billion!

Largest Published Graph Computation
Gordon Bell Finalist 2018

ShenTu on Sunway TaihuLight

By Cmglee, CC Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds, SC18, Gordon Bell Finalist
4

spcl.inf.ethz.ch

@spcl_eth

How large are extreme-scale graphs today?

271 billion vertices
12 trillion edges

1 billion!

Largest Published Graph Computation
Gordon Bell Finalist 2018

ShenTu on Sunway TaihuLight

By Cmglee, CC Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds, SC18, Gordon Bell Finalist
4

spcl.inf.ethz.ch

@spcl_eth

How large are extreme-scale graphs today?

271 billion vertices
12 trillion edges

4.4 trillion vertices
70 trillion edges

1 billion!

Largest Published Graph Computation
Gordon Bell Finalist 2018

ShenTu on Sunway TaihuLight

By Cmglee, CC Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds, SC18, Gordon Bell Finalist
4

spcl.inf.ethz.ch

@spcl_eth

Sunway TaihuLight

5
Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds, SC18, Gordon Bell Finalist

spcl.inf.ethz.ch

@spcl_eth

Sunway TaihuLight

…

…

rack 1 rack 2 rack 40

Core Group 1 Core Group 2

Core Group 3 Core Group 4

CPE
Cluster

MPE

CPE
Cluster

MPE

CPE
Cluster

CPE
Cluster

MPE MPE

NOC

MC

DRAM DRAM

MC

MC MC

DRAM DRAM

CPE with SPM Register Buses
(vertical & horizontal)

CPE Cluster, 64 cores

TaihuLight Top500 ranking: #3 (2018 Nov), #1 (2016, 2017)

5
Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds, SC18, Gordon Bell Finalist

spcl.inf.ethz.ch

@spcl_eth

Sunway TaihuLight

…

…

rack 1 rack 2 rack 40

Core Group 1 Core Group 2

Core Group 3 Core Group 4

CPE
Cluster

MPE

CPE
Cluster

MPE

CPE
Cluster

CPE
Cluster

MPE MPE

NOC

MC

DRAM DRAM

MC

MC MC

DRAM DRAM

CPE with SPM Register Buses
(vertical & horizontal)

CPE Cluster, 64 cores

TaihuLight Top500 ranking: #3 (2018 Nov), #1 (2016, 2017)

• 1/8 EFLOPS peak performance
• 1.3 PB main memory, with 5,591 TB/s bandwidth
• 70 TB/s network bisection bandwidth
• Reliable external data access, 288 GB/s IO bandwidth

5
Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds, SC18, Gordon Bell Finalist

spcl.inf.ethz.ch

@spcl_eth

Sunway TaihuLight

…

…

rack 1 rack 2 rack 40

Core Group 1 Core Group 2

Core Group 3 Core Group 4

CPE
Cluster

MPE

CPE
Cluster

MPE

CPE
Cluster

CPE
Cluster

MPE MPE

NOC

MC

DRAM DRAM

MC

MC MC

DRAM DRAM

CPE with SPM Register Buses
(vertical & horizontal)

CPE Cluster, 64 cores

• Handling of huge number of messages among 40,960 nodes
• Complex workload to map to its heterogeneous processing units
• Irregular data flow to be scheduled in regular accelerator cores

TaihuLight Top500 ranking: #3 (2018 Nov), #1 (2016, 2017)

• 1/8 EFLOPS peak performance
• 1.3 PB main memory, with 5,591 TB/s bandwidth
• 70 TB/s network bisection bandwidth
• Reliable external data access, 288 GB/s IO bandwidth

5
Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds, SC18, Gordon Bell Finalist

spcl.inf.ethz.ch

@spcl_eth

Sunway TaihuLight

…

…

rack 1 rack 2 rack 40

Core Group 1 Core Group 2

Core Group 3 Core Group 4

CPE
Cluster

MPE

CPE
Cluster

MPE

CPE
Cluster

CPE
Cluster

MPE MPE

NOC

MC

DRAM DRAM

MC

MC MC

DRAM DRAM

CPE with SPM Register Buses
(vertical & horizontal)

CPE Cluster, 64 cores

• Handling of huge number of messages among 40,960 nodes
• Complex workload to map to its heterogeneous processing units
• Irregular data flow to be scheduled in regular accelerator cores

TaihuLight Top500 ranking: #3 (2018 Nov), #1 (2016, 2017)

• 1/8 EFLOPS peak performance
• 1.3 PB main memory, with 5,591 TB/s bandwidth
• 70 TB/s network bisection bandwidth
• Reliable external data access, 288 GB/s IO bandwidth

• PageRank iteration on 12 trillion edges in 8.5s (1.4 TPEPS)
• On 70 trillion edges, nearly 2 TPEPS for PageRank and WCC

• 774 GPEPS for BFS
(PEPS = processes edges per second as opposed to TEPS)

5
Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds, SC18, Gordon Bell Finalist

spcl.inf.ethz.ch

@spcl_eth

Problems!

6

spcl.inf.ethz.ch

@spcl_eth

Problems!

6

spcl.inf.ethz.ch

@spcl_eth

Problems!

250
Watts

120
Watts

6

spcl.inf.ethz.ch

@spcl_eth

Problems!

250
Watts

120
Watts

6

spcl.inf.ethz.ch

@spcl_eth

Problems!

250
Watts

120
Watts

6

spcl.inf.ethz.ch

@spcl_eth

Problems!

250
Watts

120
Watts

6

spcl.inf.ethz.ch

@spcl_eth

Problems!

250
Watts

120
Watts

6

spcl.inf.ethz.ch

@spcl_eth

Problems!

7

spcl.inf.ethz.ch

@spcl_eth

Problems!

7

spcl.inf.ethz.ch

@spcl_eth

9
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

What is the lowest storage we can
(hope to) use to store a graph?

9
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

What is the lowest storage we can
(hope to) use to store a graph?

The storage
lower bound Ω

9
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

What is the lowest storage we can
(hope to) use to store a graph?

The storage
lower bound Ω

Which one? ☺

9
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

What is the lowest storage we can
(hope to) use to store a graph?

The storage
lower bound Ω

Shannon’s approach
logarithmic

(one needs at least log|S|
bits to store an object

from an arbitrary set S)

Which one? ☺

9
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

What is the lowest storage we can
(hope to) use to store a graph?

The storage
lower bound Ω

Shannon’s approach
logarithmic

(one needs at least log|S|
bits to store an object

from an arbitrary set S)

𝑆 = {𝑥1, 𝑥2, 𝑥3, … }
𝑥1 → 0…01
𝑥2 → 0…10
𝑥3 → 0…11

…

Which one? ☺

9
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Key idea

What is the lowest storage we can
(hope to) use to store a graph?

The storage
lower bound Ω

Shannon’s approach
logarithmic

(one needs at least log|S|
bits to store an object

from an arbitrary set S)

𝑆 = {𝑥1, 𝑥2, 𝑥3, … }
𝑥1 → 0…01
𝑥2 → 0…10
𝑥3 → 0…11

…

Which one? ☺

9
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Key idea
Encode different parts of a graph
representation using (logarithmic)

storage lower bounds

What is the lowest storage we can
(hope to) use to store a graph?

The storage
lower bound Ω

Shannon’s approach
logarithmic

(one needs at least log|S|
bits to store an object

from an arbitrary set S)

𝑆 = {𝑥1, 𝑥2, 𝑥3, … }
𝑥1 → 0…01
𝑥2 → 0…10
𝑥3 → 0…11

…

Which one? ☺

9
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Key idea
Encode different parts of a graph
representation using (logarithmic)

storage lower bounds
Vertex
labels

What is the lowest storage we can
(hope to) use to store a graph?

The storage
lower bound Ω

Shannon’s approach
logarithmic

(one needs at least log|S|
bits to store an object

from an arbitrary set S)

𝑆 = {𝑥1, 𝑥2, 𝑥3, … }
𝑥1 → 0…01
𝑥2 → 0…10
𝑥3 → 0…11

…

Which one? ☺

9
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Key idea
Encode different parts of a graph
representation using (logarithmic)

storage lower bounds
Vertex
labels

Edge
weights

What is the lowest storage we can
(hope to) use to store a graph?

The storage
lower bound Ω

Shannon’s approach
logarithmic

(one needs at least log|S|
bits to store an object

from an arbitrary set S)

𝑆 = {𝑥1, 𝑥2, 𝑥3, … }
𝑥1 → 0…01
𝑥2 → 0…10
𝑥3 → 0…11

…

Which one? ☺

9
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Key idea
Encode different parts of a graph
representation using (logarithmic)

storage lower bounds
Vertex
labels

Adjacency arrays
(edges adjacent
to each vertex)

Edge
weights

What is the lowest storage we can
(hope to) use to store a graph?

The storage
lower bound Ω

Shannon’s approach
logarithmic

(one needs at least log|S|
bits to store an object

from an arbitrary set S)

𝑆 = {𝑥1, 𝑥2, 𝑥3, … }
𝑥1 → 0…01
𝑥2 → 0…10
𝑥3 → 0…11

…

Which one? ☺

9
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Key idea
Encode different parts of a graph
representation using (logarithmic)

storage lower bounds
Vertex
labels

Adjacency arrays
(edges adjacent
to each vertex)

Offsets (locations)
of adj. arrays

Edge
weights

What is the lowest storage we can
(hope to) use to store a graph?

The storage
lower bound Ω

Shannon’s approach
logarithmic

(one needs at least log|S|
bits to store an object

from an arbitrary set S)

𝑆 = {𝑥1, 𝑥2, 𝑥3, … }
𝑥1 → 0…01
𝑥2 → 0…10
𝑥3 → 0…11

…

Which one? ☺

9
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Key idea
Encode different parts of a graph
representation using (logarithmic)

storage lower bounds
Vertex
labels

Adjacency arrays
(edges adjacent
to each vertex)

Offsets (locations)
of adj. arrays

Log ()

Edge
weights

What is the lowest storage we can
(hope to) use to store a graph?

The storage
lower bound Ω

Shannon’s approach
logarithmic

(one needs at least log|S|
bits to store an object

from an arbitrary set S)

𝑆 = {𝑥1, 𝑥2, 𝑥3, … }
𝑥1 → 0…01
𝑥2 → 0…10
𝑥3 → 0…11

…

Which one? ☺

9
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Key idea
Encode different parts of a graph
representation using (logarithmic)

storage lower bounds
Vertex
labels

Adjacency arrays
(edges adjacent
to each vertex)

Offsets (locations)
of adj. arrays

Log ()

Edge
weights

Log ()

What is the lowest storage we can
(hope to) use to store a graph?

The storage
lower bound Ω

Shannon’s approach
logarithmic

(one needs at least log|S|
bits to store an object

from an arbitrary set S)

𝑆 = {𝑥1, 𝑥2, 𝑥3, … }
𝑥1 → 0…01
𝑥2 → 0…10
𝑥3 → 0…11

…

Which one? ☺

9
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Key idea
Encode different parts of a graph
representation using (logarithmic)

storage lower bounds
Vertex
labels

Adjacency arrays
(edges adjacent
to each vertex)

Offsets (locations)
of adj. arrays

Log ()

Log ()

Edge
weights

Log ()

What is the lowest storage we can
(hope to) use to store a graph?

The storage
lower bound Ω

Shannon’s approach
logarithmic

(one needs at least log|S|
bits to store an object

from an arbitrary set S)

𝑆 = {𝑥1, 𝑥2, 𝑥3, … }
𝑥1 → 0…01
𝑥2 → 0…10
𝑥3 → 0…11

…

Which one? ☺

9
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Key idea
Encode different parts of a graph
representation using (logarithmic)

storage lower bounds
Vertex
labels

Adjacency arrays
(edges adjacent
to each vertex)

Offsets (locations)
of adj. arrays

Log ()

Log ()

Log ()

Edge
weights

Log ()

What is the lowest storage we can
(hope to) use to store a graph?

The storage
lower bound Ω

Shannon’s approach
logarithmic

(one needs at least log|S|
bits to store an object

from an arbitrary set S)

𝑆 = {𝑥1, 𝑥2, 𝑥3, … }
𝑥1 → 0…01
𝑥2 → 0…10
𝑥3 → 0…11

…

Which one? ☺

9
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

ADJACENCY ARRAY GRAPH REPRESENTATION

10
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

ADJACENCY ARRAY GRAPH REPRESENTATION

Representation

10
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

ADJACENCY ARRAY GRAPH REPRESENTATION

0

1

2

3

4

5

Representation

10
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Adjacency arrays
(vertices adjacent

to each vertex)

Offsets

ADJACENCY ARRAY GRAPH REPRESENTATION

0 1 2

4

1 0 3

2 0 3

3 1 2

4 3 5

5 4

Representation

10
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Adjacency arrays
(vertices adjacent

to each vertex)

Offsets

ADJACENCY ARRAY GRAPH REPRESENTATION

0 1 2

4

1 0 3

2 0 3

3 1 2

4 3 5

5 4

Representation

10
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Adjacency arrays
(vertices adjacent

to each vertex)

Offsets

ADJACENCY ARRAY GRAPH REPRESENTATION

0 1 2

4

1 0 3

2 0 3

3 1 2

4 3 5

5 4

Representation

Physical realization

10
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Adjacency arrays
(vertices adjacent

to each vertex)

Offsets

ADJACENCY ARRAY GRAPH REPRESENTATION

0 1 2

4

1 0 3

2 0 3

3 1 2

4 3 5

5 4

Representation

Physical realization

1 2 40 3 0 3 1 2 3 5 4

Adjacency arrays (one
contiguous array)

10
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Adjacency arrays
(vertices adjacent

to each vertex)

Offsets

ADJACENCY ARRAY GRAPH REPRESENTATION

0 1 2

4

1 0 3

2 0 3

3 1 2

4 3 5

5 4

Representation

Physical realization

1 2 40 3 0 3 1 2 3 5 4

40 2 6 9 11

Offsets (another contiguous array)

Adjacency arrays (one
contiguous array)

10
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Adjacency arrays
(vertices adjacent

to each vertex)

Offsets

ADJACENCY ARRAY GRAPH REPRESENTATION

0 1 2

4

1 0 3

2 0 3

3 1 2

4 3 5

5 4

Representation

Physical realization

1 2 40 3 0 3 1 2 3 5 4

40 2 6 9 11

Offsets (another contiguous array)

Adjacency arrays (one
contiguous array)...

10
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Adjacency arrays
(vertices adjacent

to each vertex)

Offsets

ADJACENCY ARRAY GRAPH REPRESENTATION

0 1 2

4

1 0 3

2 0 3

3 1 2

4 3 5

5 4

Representation

Physical realization

1 2 40 3 0 3 1 2 3 5 4

40 2 6 9 11

Offsets (another contiguous array)

Adjacency arrays (one
contiguous array)...

......

10
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Adjacency arrays
(vertices adjacent

to each vertex)

Offsets

ADJACENCY ARRAY GRAPH REPRESENTATION

0 1 2

4

1 0 3

2 0 3

3 1 2

4 3 5

5 4

Representation

Physical realization

1 2 40 3 0 3 1 2 3 5 4

40 2 6 9 11

Offsets (another contiguous array)

Adjacency arrays (one
contiguous array)

Log ()

...

......

10
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Adjacency arrays
(vertices adjacent

to each vertex)

Offsets

ADJACENCY ARRAY GRAPH REPRESENTATION

0 1 2

4

1 0 3

2 0 3

3 1 2

4 3 5

5 4

Representation

Physical realization

1 2 40 3 0 3 1 2 3 5 4

40 2 6 9 11

Offsets (another contiguous array)

Adjacency arrays (one
contiguous array)

Log ()

Log ()

...

......

10
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

11
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

11
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

11
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

: #edges,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

Symbols

11
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

: #edges,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

Lower bounds (global)

Symbols

11
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

: #edges,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

log 𝑛

Lower bounds (global)

Symbols

11
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

: #edges,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

log 𝑛

Lower bounds (global)

Symbols

This is it?
Not really ☺

11
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

: #edges,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

log 𝑛

Lower bounds (global)

Lower bounds (local)

Symbols

This is it?
Not really ☺

11
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

: #edges,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

log 𝑛

Lower bounds (global)

Lower bounds (local)

Assume:

Symbols

This is it?
Not really ☺

11
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

: #edges,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

log 𝑛

Lower bounds (global)

Lower bounds (local)

Assume:

𝑉 = 1,… , 222- a graph, e.g.,

Symbols

This is it?
Not really ☺

11
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

: #edges,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

log 𝑛

Lower bounds (global)

Lower bounds (local)

Assume:

𝑉 = 1,… , 222- a graph, e.g.,

- A vertex with few neighbors:𝑣 𝑑𝑣 ≪ 𝑛

Symbols

This is it?
Not really ☺

11
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

: #edges,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

log 𝑛

Lower bounds (global)

Lower bounds (local)

Assume:

𝑉 = 1,… , 222- a graph, e.g.,

- A vertex with few neighbors:𝑣 𝑑𝑣 ≪ 𝑛
- ...all these neighbors have small labels: ෢𝑁𝑣 ≪ 𝑛

Symbols

This is it?
Not really ☺

11
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

: #edges,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

log 𝑛

Lower bounds (global)

Lower bounds (local)

Assume:

𝑉 = 1,… , 222- a graph, e.g.,

- A vertex with few neighbors:𝑣 𝑑𝑣 ≪ 𝑛
- ...all these neighbors have small labels: ෢𝑁𝑣 ≪ 𝑛

v 2 3 4 5

Symbols

This is it?
Not really ☺

11
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

: #edges,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

log 𝑛

Lower bounds (global)

Lower bounds (local)

Assume:

𝑉 = 1,… , 222- a graph, e.g.,

- A vertex with few neighbors:𝑣 𝑑𝑣 ≪ 𝑛
- ...all these neighbors have small labels: ෢𝑁𝑣 ≪ 𝑛

log 222 = 22

v 2 3 4 5

Symbols

This is it?
Not really ☺

11
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

: #edges,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

log 𝑛

Lower bounds (global)

Lower bounds (local)

Assume:

𝑉 = 1,… , 222- a graph, e.g.,

- A vertex with few neighbors:𝑣 𝑑𝑣 ≪ 𝑛
- ...all these neighbors have small labels: ෢𝑁𝑣 ≪ 𝑛

v 0...10

log 222 = 22

v 2 3 4 5

0...11

0...100 0...101

Symbols

This is it?
Not really ☺

11
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

: #edges,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

log 𝑛

Lower bounds (global)

Lower bounds (local)

Assume:

𝑉 = 1,… , 222- a graph, e.g.,

- A vertex with few neighbors:𝑣 𝑑𝑣 ≪ 𝑛
- ...all these neighbors have small labels: ෢𝑁𝑣 ≪ 𝑛

v 0...10

log 222 = 22

v 2 3 4 5

0...11

0...100 0...101

19 zeros!

Symbols

This is it?
Not really ☺

11
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

: #edges,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

log 𝑛

Lower bounds (global)

Lower bounds (local)

Assume:

𝑉 = 1,… , 222- a graph, e.g.,

- A vertex with few neighbors:𝑣 𝑑𝑣 ≪ 𝑛
- ...all these neighbors have small labels: ෢𝑁𝑣 ≪ 𝑛

v 0...10

log 222 = 22

v 2 3 4 5

0...11

0...100 0...101

19 zeros!

log ෢𝑁𝑣Thus, use the local bound

Symbols

This is it?
Not really ☺

11
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Lower bounds (local): problem

𝑉 = 1,… , 222- a graph, e.g.,

- A vertex with few neighbors:𝑣 𝑑𝑣 ≪ 𝑛
- ...all these neighbors have small labels: ෢𝑁𝑣 ≪ 𝑛

v 0...10 0...11

0...100 0...101

: #edges,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

Symbols

This is it?
Not really ☺

12
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Lower bounds (local): problem

What if:

𝑉 = 1,… , 222- a graph, e.g.,

- A vertex with few neighbors:𝑣 𝑑𝑣 ≪ 𝑛
- ...all these neighbors have small labels: ෢𝑁𝑣 ≪ 𝑛

v 0...10 0...11

0...100 0...101

: #edges,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

Symbols

This is it?
Not really ☺

12
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Lower bounds (local): problem

What if:

𝑉 = 1,… , 222- a graph, e.g.,

- A vertex with few neighbors:𝑣 𝑑𝑣 ≪ 𝑛
- ...all these neighbors have small labels: ෢𝑁𝑣 ≪ 𝑛

v 0...10 0...11

0...100 0...101

- ...one neighbor has a large ID:

: #edges,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

Symbols

This is it?
Not really ☺

12
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Lower bounds (local): problem

What if:

𝑉 = 1,… , 222- a graph, e.g.,

- A vertex with few neighbors:𝑣 𝑑𝑣 ≪ 𝑛
- ...all these neighbors have small labels: ෢𝑁𝑣 ≪ 𝑛

v 0...10

v 2 3 4 5

0...11

0...100 0...101

- ...one neighbor has a large ID:

1M

: #edges,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

Symbols

This is it?
Not really ☺

12
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Lower bounds (local): problem

What if:

𝑉 = 1,… , 222- a graph, e.g.,

- A vertex with few neighbors:𝑣 𝑑𝑣 ≪ 𝑛
- ...all these neighbors have small labels: ෢𝑁𝑣 ≪ 𝑛

v 0...10

log 220 = 20

v 2 3 4 5

0...11

0...100 0...101

- ...one neighbor has a large ID:

1M

: #edges,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

Symbols

This is it?
Not really ☺

12
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Lower bounds (local): problem

What if:

𝑉 = 1,… , 222- a graph, e.g.,

- A vertex with few neighbors:𝑣 𝑑𝑣 ≪ 𝑛
- ...all these neighbors have small labels: ෢𝑁𝑣 ≪ 𝑛

v 0...10

log 220 = 20

v 2 3 4 5

0...11

0...100 0...101

17 zeros!- ...one neighbor has a large ID:

1M

: #edges,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

Symbols

This is it?
Not really ☺

12
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2

13
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2

13
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2

Use a bit vector instead of an
array of offsets...

13
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2

Use a bit vector instead of an
array of offsets...

Bit vectors instead of offset arrays

13
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2

Use a bit vector instead of an
array of offsets...

1 2 40 3 0 3 1 2 3 5 4

40 2 6 9 11

Bit vectors instead of offset arrays

13
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2

Use a bit vector instead of an
array of offsets...

1 2 40 3 0 3 1 2 3 5 4

40 2 6 9 11

Bit vectors instead of offset arrays

13
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2

Use a bit vector instead of an
array of offsets...

1 2 40 3 0 3 1 2 3 5 4

40 2 6 9 11

Bit vectors instead of offset arrays

101010100101

13
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2

Use a bit vector instead of an
array of offsets...

1 2 40 3 0 3 1 2 3 5 4

40 2 6 9 11

Bit vectors instead of offset arrays

i-th set bit has a position x➔
the adjacency array of a vertex i

starts at a word x

101010100101

13
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2

Use a bit vector instead of an
array of offsets...

1 2 40 3 0 3 1 2 3 5 4

40 2 6 9 11

Bit vectors instead of offset arrays

i-th set bit has a position x➔
the adjacency array of a vertex i

starts at a word x

101010100101

How many 1s
are set before a
given i-th bit?

13
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2 ...Encode the resulting bit vectors as
succinct bit vectors [1]

[1] G. J. Jacobson. Succinct Static Data Structures. 1988
14

M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2 ...Encode the resulting bit vectors as
succinct bit vectors [1]

Succinct bit vectors

[1] G. J. Jacobson. Succinct Static Data Structures. 1988
14

M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2 ...Encode the resulting bit vectors as
succinct bit vectors [1]

Succinct bit vectors They use ⌈Q⌉ + o(Q) bits (⌈Q⌉ - lower bound),
they answer various queries in o(Q) time.

[1] G. J. Jacobson. Succinct Static Data Structures. 1988
14

M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2 ...Encode the resulting bit vectors as
succinct bit vectors [1]

Succinct bit vectors They use ⌈Q⌉ + o(Q) bits (⌈Q⌉ - lower bound),
they answer various queries in o(Q) time.

= small + fast
(hopefully)

[1] G. J. Jacobson. Succinct Static Data Structures. 1988
14

M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2 ...Encode the resulting bit vectors as
succinct bit vectors [1]

Succinct bit vectors They use ⌈Q⌉ + o(Q) bits (⌈Q⌉ - lower bound),
they answer various queries in o(Q) time.

1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 . . .

= small + fast
(hopefully)

[1] G. J. Jacobson. Succinct Static Data Structures. 1988
14

M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2 ...Encode the resulting bit vectors as
succinct bit vectors [1]

Succinct bit vectors They use ⌈Q⌉ + o(Q) bits (⌈Q⌉ - lower bound),
they answer various queries in o(Q) time.

1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 . . .n bits

= small + fast
(hopefully)

[1] G. J. Jacobson. Succinct Static Data Structures. 1988
14

M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2 ...Encode the resulting bit vectors as
succinct bit vectors [1]

Succinct bit vectors They use ⌈Q⌉ + o(Q) bits (⌈Q⌉ - lower bound),
they answer various queries in o(Q) time.

1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 . . .n bits

= small + fast
(hopefully)

[1] G. J. Jacobson. Succinct Static Data Structures. 1988
14

M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2 ...Encode the resulting bit vectors as
succinct bit vectors [1]

Succinct bit vectors They use ⌈Q⌉ + o(Q) bits (⌈Q⌉ - lower bound),
they answer various queries in o(Q) time.

1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 . . .n bits

log2 𝑛 log2 𝑛 log2 𝑛

...

= small + fast
(hopefully)

[1] G. J. Jacobson. Succinct Static Data Structures. 1988
14

M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2 ...Encode the resulting bit vectors as
succinct bit vectors [1]

Succinct bit vectors They use ⌈Q⌉ + o(Q) bits (⌈Q⌉ - lower bound),
they answer various queries in o(Q) time.

1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 . . .n bits

log2 𝑛 log2 𝑛 log2 𝑛

...

= 𝑡1

= small + fast
(hopefully)

[1] G. J. Jacobson. Succinct Static Data Structures. 1988
14

M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2 ...Encode the resulting bit vectors as
succinct bit vectors [1]

Succinct bit vectors They use ⌈Q⌉ + o(Q) bits (⌈Q⌉ - lower bound),
they answer various queries in o(Q) time.

1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 . . .n bits

log2 𝑛 log2 𝑛 log2 𝑛

...

...

= 𝑡1

= small + fast
(hopefully)

[1] G. J. Jacobson. Succinct Static Data Structures. 1988
14

M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2 ...Encode the resulting bit vectors as
succinct bit vectors [1]

Succinct bit vectors They use ⌈Q⌉ + o(Q) bits (⌈Q⌉ - lower bound),
they answer various queries in o(Q) time.

1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 . . .n bits

log2 𝑛 log2 𝑛 log2 𝑛

...

...

1

2
log 𝑛

...

= 𝑡1

= small + fast
(hopefully)

[1] G. J. Jacobson. Succinct Static Data Structures. 1988
14

M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2 ...Encode the resulting bit vectors as
succinct bit vectors [1]

Succinct bit vectors They use ⌈Q⌉ + o(Q) bits (⌈Q⌉ - lower bound),
they answer various queries in o(Q) time.

1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 . . .n bits

log2 𝑛

1

2
log 𝑛

log2 𝑛 log2 𝑛

...

...

1

2
log 𝑛

1

2
log 𝑛

1

2
log 𝑛

1

2
log 𝑛

1

2
log 𝑛

...

= 𝑡1

= small + fast
(hopefully)

[1] G. J. Jacobson. Succinct Static Data Structures. 1988
14

M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2 ...Encode the resulting bit vectors as
succinct bit vectors [1]

Succinct bit vectors They use ⌈Q⌉ + o(Q) bits (⌈Q⌉ - lower bound),
they answer various queries in o(Q) time.

1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 . . .n bits

log2 𝑛

1

2
log 𝑛

log2 𝑛 log2 𝑛

...

...

1

2
log 𝑛

1

2
log 𝑛

1

2
log 𝑛

1

2
log 𝑛

1

2
log 𝑛

...

= 𝑡1

= 𝑡2

= small + fast
(hopefully)

[1] G. J. Jacobson. Succinct Static Data Structures. 1988
14

M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2 ...Encode the resulting bit vectors as
succinct bit vectors [1]

Succinct bit vectors They use ⌈Q⌉ + o(Q) bits (⌈Q⌉ - lower bound),
they answer various queries in o(Q) time.

1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 . . .n bits

log2 𝑛

1

2
log 𝑛

log2 𝑛 log2 𝑛

...

...

1

2
log 𝑛

1

2
log 𝑛

1

2
log 𝑛

1

2
log 𝑛

1

2
log 𝑛

...

= 𝑡1

= 𝑡2

Compute & store
the number of 1s

= small + fast
(hopefully)

[1] G. J. Jacobson. Succinct Static Data Structures. 1988
14

M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2 ...Encode the resulting bit vectors as
succinct bit vectors [1]

Succinct bit vectors They use ⌈Q⌉ + o(Q) bits (⌈Q⌉ - lower bound),
they answer various queries in o(Q) time.

1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 . . .n bits

log2 𝑛

1

2
log 𝑛

log2 𝑛 log2 𝑛

...

...

1

2
log 𝑛

1

2
log 𝑛

1

2
log 𝑛

1

2
log 𝑛

1

2
log 𝑛

...

= 𝑡1

= 𝑡2

Compute & store
the number of 1s

Compute & store
the number of 1s

= small + fast
(hopefully)

[1] G. J. Jacobson. Succinct Static Data Structures. 1988
14

M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2 ...Encode the resulting bit vectors as
succinct bit vectors [1]

Succinct bit vectors They use ⌈Q⌉ + o(Q) bits (⌈Q⌉ - lower bound),
they answer various queries in o(Q) time.

1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 . . .n bits

log2 𝑛

1

2
log 𝑛

log2 𝑛 log2 𝑛

...

...

1

2
log 𝑛

1

2
log 𝑛

1

2
log 𝑛

1

2
log 𝑛

1

2
log 𝑛

...

= 𝑡1

= 𝑡2

Compute & store
the number of 1s

= 𝑂
𝑛

𝑡1
log 𝑛 = 𝑂

𝑛

log 𝑛
= 𝑜(𝑛)

Compute & store
the number of 1s

= small + fast
(hopefully)

[1] G. J. Jacobson. Succinct Static Data Structures. 1988
14

M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2 ...Encode the resulting bit vectors as
succinct bit vectors [1]

Succinct bit vectors They use ⌈Q⌉ + o(Q) bits (⌈Q⌉ - lower bound),
they answer various queries in o(Q) time.

1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 . . .n bits

log2 𝑛

1

2
log 𝑛

log2 𝑛 log2 𝑛

...

...

1

2
log 𝑛

1

2
log 𝑛

1

2
log 𝑛

1

2
log 𝑛

1

2
log 𝑛

...

= 𝑡1

= 𝑡2

Compute & store
the number of 1s

= 𝑂
𝑛

𝑡1
log 𝑛 = 𝑂

𝑛

log 𝑛
= 𝑜(𝑛)

Compute & store
the number of 1s

= 𝑂
𝑛

𝑡2
log 𝑡1 = 𝑂

𝑛 log log 𝑛

log 𝑛
= 𝑜(𝑛)

= small + fast
(hopefully)

[1] G. J. Jacobson. Succinct Static Data Structures. 1988
14

M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2 ...Encode the resulting bit vectors as
succinct bit vectors [1]

Succinct bit vectors They use ⌈Q⌉ + o(Q) bits (⌈Q⌉ - lower bound),
they answer various queries in o(Q) time.

1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 . . .n bits

log2 𝑛

1

2
log 𝑛

log2 𝑛 log2 𝑛

...

...

1

2
log 𝑛

1

2
log 𝑛

1

2
log 𝑛

1

2
log 𝑛

1

2
log 𝑛

...

= 𝑡1

= 𝑡2

Compute & store
the number of 1s

= 𝑂
𝑛

𝑡1
log 𝑛 = 𝑂

𝑛

log 𝑛
= 𝑜(𝑛)

Compute & store
the number of 1s

= 𝑂
𝑛

𝑡2
log 𝑡1 = 𝑂

𝑛 log log 𝑛

log 𝑛
= 𝑜(𝑛)

= small + fast
(hopefully)

[1] G. J. Jacobson. Succinct Static Data Structures. 1988
14

M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2 ...Encode the resulting bit vectors as
succinct bit vectors [1]

Succinct bit vectors They use ⌈Q⌉ + o(Q) bits (⌈Q⌉ - lower bound),
they answer various queries in o(Q) time.

1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 . . .n bits

log2 𝑛

1

2
log 𝑛

log2 𝑛 log2 𝑛

...

...

1

2
log 𝑛

1

2
log 𝑛

1

2
log 𝑛

1

2
log 𝑛

1

2
log 𝑛

...

= 𝑡1

= 𝑡2

Compute & store
the number of 1s

= 𝑂
𝑛

𝑡1
log 𝑛 = 𝑂

𝑛

log 𝑛
= 𝑜(𝑛)

Compute & store
the number of 1s

= 𝑂
𝑛

𝑡2
log 𝑡1 = 𝑂

𝑛 log log 𝑛

log 𝑛
= 𝑜(𝑛)

Total storage:

𝑛 + 𝑜 𝑛 + 𝑜 𝑛 +⋯
= 𝑛 + 𝑜(𝑛)

= small + fast
(hopefully)

[1] G. J. Jacobson. Succinct Static Data Structures. 1988
14

M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2 ...Encode the resulting bit vectors as
succinct bit vectors [1]

Succinct bit vectors They use ⌈Q⌉ + o(Q) bits (⌈Q⌉ - lower bound),
they answer various queries in o(Q) time.

1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 . . .n bits

log2 𝑛

1

2
log 𝑛

log2 𝑛 log2 𝑛

...

...

1

2
log 𝑛

1

2
log 𝑛

1

2
log 𝑛

1

2
log 𝑛

1

2
log 𝑛

...

= 𝑡1

= 𝑡2

Compute & store
the number of 1s

= 𝑂
𝑛

𝑡1
log 𝑛 = 𝑂

𝑛

log 𝑛
= 𝑜(𝑛)

Compute & store
the number of 1s

= 𝑂
𝑛

𝑡2
log 𝑡1 = 𝑂

𝑛 log log 𝑛

log 𝑛
= 𝑜(𝑛)

Total storage:

𝑛 + 𝑜 𝑛 + 𝑜 𝑛 +⋯
= 𝑛 + 𝑜(𝑛)

= small + fast
(hopefully)

[1] G. J. Jacobson. Succinct Static Data Structures. 1988

We will show that they are
in practice both small and fast!

14
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Adjacency
structureLog ()3

15
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Adjacency
structureLog ()3 Use different relabelings

15
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Adjacency
structureLog ()3 Use different relabelings

Degree-Minimizing: Targeting general graphs
(no assumptions on graph structure)

15
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Adjacency
structureLog ()3 Use different relabelings

Degree-Minimizing: Targeting general graphs
(no assumptions on graph structure)

More schemes
that assume specific
classes of graphs

...

15
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Adjacency
structureLog ()3 Use different relabelings

Degree-Minimizing: Targeting general graphs
(no assumptions on graph structure)

2 3 4 5 1MPermute() = v w x y z
(simultaneously for all
other neighborhoods)

More schemes
that assume specific
classes of graphs

...

15
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Adjacency
structureLog ()3 Use different relabelings

Degree-Minimizing: Targeting general graphs
(no assumptions on graph structure)

(1) The more often a label occurs
(i.e., the higher vertex degree), the
smaller permuted value it receives

2 3 4 5 1MPermute() = v w x y z
(simultaneously for all
other neighborhoods)

More schemes
that assume specific
classes of graphs

...

15
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Adjacency
structureLog ()3 Use different relabelings

Degree-Minimizing: Targeting general graphs
(no assumptions on graph structure)

(1) The more often a label occurs
(i.e., the higher vertex degree), the
smaller permuted value it receives

2 3 4 5 1MPermute() = v w x y z
(simultaneously for all
other neighborhoods)

v w x y z w-vGap-encode() = x-w y-x z-yv

More schemes
that assume specific
classes of graphs

...

15
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Adjacency
structureLog ()3 Use different relabelings

Degree-Minimizing: Targeting general graphs
(no assumptions on graph structure)

(1) The more often a label occurs
(i.e., the higher vertex degree), the
smaller permuted value it receives

2 3 4 5 1MPermute() = v w x y z
(simultaneously for all
other neighborhoods)

(2) Encode new labels with gap encoding
(differences between consecutive labels

instead of full labels)

v w x y z w-vGap-encode() = x-w y-x z-yv

More schemes
that assume specific
classes of graphs

...

15
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

OVERVIEW OF FULL LOG(GRAPH) DESIGN

16
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

OVERVIEW OF FULL LOG(GRAPH) DESIGN

16
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

OVERVIEW OF FULL LOG(GRAPH) DESIGN

16
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

OVERVIEW OF FULL LOG(GRAPH) DESIGN

16
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

OVERVIEW OF FULL LOG(GRAPH) DESIGN

16
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

OVERVIEW OF FULL LOG(GRAPH) DESIGN

16
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

OVERVIEW OF FULL LOG(GRAPH) DESIGN

Looks complex ☺

16
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

OVERVIEW OF FULL LOG(GRAPH) DESIGN

Looks complex ☺

We analyzed / implemented (in total):
- 6 schemes for compressing fine elements,
- 10+ schemes for compressing offset structures,
- 4+ schemes for compressing adjacency structures

16
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

OVERVIEW OF FULL LOG(GRAPH) DESIGN

Looks complex ☺

We analyzed / implemented (in total):
- 6 schemes for compressing fine elements,
- 10+ schemes for compressing offset structures,
- 4+ schemes for compressing adjacency structures

... they all can be arbitrarily
combined.

16
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

OVERVIEW OF FULL LOG(GRAPH) DESIGN

Looks complex ☺

We analyzed / implemented (in total):
- 6 schemes for compressing fine elements,
- 10+ schemes for compressing offset structures,
- 4+ schemes for compressing adjacency structures

... they all can be arbitrarily
combined.

How to ensure fast, manageable,
and extensible implementation

of all these schemes?

16
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

OVERVIEW OF FULL LOG(GRAPH) DESIGN

Looks complex ☺

We analyzed / implemented (in total):
- 6 schemes for compressing fine elements,
- 10+ schemes for compressing offset structures,
- 4+ schemes for compressing adjacency structures

... they all can be arbitrarily
combined.

How to ensure fast, manageable,
and extensible implementation

of all these schemes?

We use C++ templates to develop
a library that facilitates implementation,
benchmarking, analysis, and extending

the discussed schemes

16
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

SSSP

Number of vertices: 4M
Kronecker graphs

Vertex
labels

Log (),1 Edge
weights

Log () Storage, Performance

17
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

SSSP

Number of vertices: 4M
Kronecker graphs

Vertex
labels

Log (),1 Edge
weights

Log () Storage, Performance

17
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

SSSP

Number of vertices: 4M
Kronecker graphs

Vertex
labels

Log (),1 Edge
weights

Log () Storage, Performance

Log(Graph) consistently
reduces storage overhead

(by 20-35%)
17

M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

SSSP

Number of vertices: 4M
Kronecker graphs

Vertex
labels

Log (),1 Edge
weights

Log () Storage, Performance

Log(Graph)
accelerates GAPBS

Log(Graph) consistently
reduces storage overhead

(by 20-35%)
17

M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

SSSP

Number of vertices: 4M
Kronecker graphs

Vertex
labels

Log (),1 Edge
weights

Log () Storage, Performance

Log(Graph)
accelerates GAPBS

Both storage and performance
are improved simultaneously

Log(Graph) consistently
reduces storage overhead

(by 20-35%)
17

M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

OTHER RESULTS

18
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

OTHER RESULTS

18
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Problems!

20

spcl.inf.ethz.ch

@spcl_eth

Problems!

20

spcl.inf.ethz.ch

@spcl_eth

Problems!

20

spcl.inf.ethz.ch

@spcl_eth

PAGERANK

21

spcl.inf.ethz.ch

@spcl_eth

PAGERANK

21

spcl.inf.ethz.ch

@spcl_eth

PAGERANK

21

spcl.inf.ethz.ch

@spcl_eth

PAGERANK

21

spcl.inf.ethz.ch

@spcl_eth

PAGERANK
𝑃 threads are

used

21

spcl.inf.ethz.ch

@spcl_eth

PAGERANK

[1] J. J. Whang et al. Scalable Data-Driven PageRank: Algorithms, System Issues, and Lessons Learned. Euro-Par 2015.

𝑃 threads are
used

21

spcl.inf.ethz.ch

@spcl_eth

PAGERANK

Pushing

[1] J. J. Whang et al. Scalable Data-Driven PageRank: Algorithms, System Issues, and Lessons Learned. Euro-Par 2015.

𝑃 threads are
used

21

spcl.inf.ethz.ch

@spcl_eth

PAGERANK

Pushing

[1] J. J. Whang et al. Scalable Data-Driven PageRank: Algorithms, System Issues, and Lessons Learned. Euro-Par 2015.

𝑃 threads are
used

21

spcl.inf.ethz.ch

@spcl_eth

PAGERANK

Pushing

[1] J. J. Whang et al. Scalable Data-Driven PageRank: Algorithms, System Issues, and Lessons Learned. Euro-Par 2015.

𝑃 threads are
used

21

spcl.inf.ethz.ch

@spcl_eth

PAGERANK

Pushing

[1] J. J. Whang et al. Scalable Data-Driven PageRank: Algorithms, System Issues, and Lessons Learned. Euro-Par 2015.

𝑃 threads are
used

Write conflicts

21

spcl.inf.ethz.ch

@spcl_eth

PAGERANK

Pulling

[1] J. J. Whang et al. Scalable Data-Driven PageRank: Algorithms, System Issues, and Lessons Learned. Euro-Par 2015.

𝑃 threads are
used

21

spcl.inf.ethz.ch

@spcl_eth

PAGERANK

Pulling

[1] J. J. Whang et al. Scalable Data-Driven PageRank: Algorithms, System Issues, and Lessons Learned. Euro-Par 2015.

𝑃 threads are
used

21

spcl.inf.ethz.ch

@spcl_eth

PAGERANK

Pulling

[1] J. J. Whang et al. Scalable Data-Driven PageRank: Algorithms, System Issues, and Lessons Learned. Euro-Par 2015.

𝑃 threads are
used

21

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

22

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

22

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

22

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

Root r

22

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

Root r

22

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

Root r

22

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

Root r

22

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

22

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

22

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

22

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

22

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

22

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

22

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

22

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

Pushing or pulling
when expanding a

frontier

22

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

Pushing

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Pushing or pulling
when expanding a

frontier

22

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

Pushing

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Pushing or pulling
when expanding a

frontier

22

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

Pushing

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Pushing or pulling
when expanding a

frontier

22

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

Pushing

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Pushing or pulling
when expanding a

frontier

22

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

Pushing

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Pushing or pulling
when expanding a

frontier

22

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Pushing or pulling
when expanding a

frontier

22

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

Pulling

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Pushing or pulling
when expanding a

frontier

22

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

Pulling

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Pushing or pulling
when expanding a

frontier

22

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

Pulling

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Pushing or pulling
when expanding a

frontier

22

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

Pulling

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Pushing or pulling
when expanding a

frontier

22

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

Pulling

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Pushing or pulling
when expanding a

frontier

22

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

Pulling

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Pushing or pulling
when expanding a

frontier

22

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

Pulling

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Pushing or pulling
when expanding a

frontier

22

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

Pulling

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Pushing or pulling
when expanding a

frontier

22

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

Pulling

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Pushing or pulling
when expanding a

frontier

22

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

Pulling

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Pushing or pulling
when expanding a

frontier

22

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

Pulling

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Pushing or pulling
when expanding a

frontier

22

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

Pulling

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Pushing or pulling
when expanding a

frontier

22

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

Pulling

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Pushing or pulling
when expanding a

frontier

22

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

Pulling

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Pushing or pulling
when expanding a

frontier

22

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

Pulling

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Pushing or pulling
when expanding a

frontier

22

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

Pulling

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Pushing or pulling
when expanding a

frontier

22

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

Pulling

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Pushing or pulling
when expanding a

frontier

22

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

Pulling

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Pushing or pulling
when expanding a

frontier

22

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

Pulling

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Pushing or pulling
when expanding a

frontier

22

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

Pulling

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Pushing or pulling
when expanding a

frontier

22

spcl.inf.ethz.ch

@spcl_eth

OTHER ALGORITHMS & FORMULATIONS

24
M. Besta et al.: “To Push or To Pull: On Reducing Communication and Synchronization in Graph Computations”, HPDC’17

spcl.inf.ethz.ch

@spcl_eth

Triangle Counting

BFS

∆-Stepping

OTHER ALGORITHMS & FORMULATIONS

BC (algebraic notation)

Betweenness Centrality (BC)

Graph Coloring

PageRank
Boruvka MST

24
M. Besta et al.: “To Push or To Pull: On Reducing Communication and Synchronization in Graph Computations”, HPDC’17

spcl.inf.ethz.ch

@spcl_eth

Triangle Counting

BFS

∆-Stepping

OTHER ALGORITHMS & FORMULATIONS

BC (algebraic notation)

Betweenness Centrality (BC)

Graph Coloring

PageRank
Boruvka MST

Check out the paper ☺

24
M. Besta et al.: “To Push or To Pull: On Reducing Communication and Synchronization in Graph Computations”, HPDC’17

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

PAGERANK

Kronecker graphs

Distributed-
Memory

26
M. Besta et al.: “To Push or To Pull: On Reducing Communication and Synchronization in Graph Computations”, HPDC’17

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

PAGERANK

Kronecker graphs

𝑛 = 225, 𝑚 = 227 𝑛 = 227, 𝑚 = 229

Distributed-
Memory

26
M. Besta et al.: “To Push or To Pull: On Reducing Communication and Synchronization in Graph Computations”, HPDC’17

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

PAGERANK

Kronecker graphs

𝑛 = 225, 𝑚 = 227 𝑛 = 227, 𝑚 = 229

Distributed-
MemoryMsg-Passing fastest

26
M. Besta et al.: “To Push or To Pull: On Reducing Communication and Synchronization in Graph Computations”, HPDC’17

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

PAGERANK

Kronecker graphs

𝑛 = 225, 𝑚 = 227 𝑛 = 227, 𝑚 = 229

Distributed-
Memory

Pulling incurs
more

communication
while pushing

expensive
underlying locking

Msg-Passing fastest

26
M. Besta et al.: “To Push or To Pull: On Reducing Communication and Synchronization in Graph Computations”, HPDC’17

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

PAGERANK

Kronecker graphs

𝑛 = 225, 𝑚 = 227 𝑛 = 227, 𝑚 = 229

Distributed-
Memory

Collectives: combines
pushing and pulling

Pulling incurs
more

communication
while pushing

expensive
underlying locking

Msg-Passing fastest

26
M. Besta et al.: “To Push or To Pull: On Reducing Communication and Synchronization in Graph Computations”, HPDC’17

spcl.inf.ethz.ch

@spcl_eth

To Push or To Pull?

28
M. Besta et al.: “To Push or To Pull: On Reducing Communication and Synchronization in Graph Computations”, HPDC’17

spcl.inf.ethz.ch

@spcl_eth

To Push or To Pull?
If the complexities

match: pull

28
M. Besta et al.: “To Push or To Pull: On Reducing Communication and Synchronization in Graph Computations”, HPDC’17

spcl.inf.ethz.ch

@spcl_eth

To Push or To Pull?
If the complexities

match: pull

Otherwise: push

28
M. Besta et al.: “To Push or To Pull: On Reducing Communication and Synchronization in Graph Computations”, HPDC’17

spcl.inf.ethz.ch

@spcl_eth

To Push or To Pull?
If the complexities

match: pull

Otherwise: push

+ check your
hardware ☺

28
M. Besta et al.: “To Push or To Pull: On Reducing Communication and Synchronization in Graph Computations”, HPDC’17

spcl.inf.ethz.ch

@spcl_eth

Moving on …

29

spcl.inf.ethz.ch

@spcl_eth

Moving on …

29

spcl.inf.ethz.ch

@spcl_eth

Moving on …

29

spcl.inf.ethz.ch

@spcl_eth

VECTORIZATION

30

spcl.inf.ethz.ch

@spcl_eth

▪ Deployed in various hardware

VECTORIZATION

30

spcl.inf.ethz.ch

@spcl_eth

▪ Deployed in various hardware
▪ Becoming more popular

VECTORIZATION

30

spcl.inf.ethz.ch

@spcl_eth

𝐶 = 8 (SIMD width)

AVX

▪ Deployed in various hardware
▪ Becoming more popular

VECTORIZATION

30

spcl.inf.ethz.ch

@spcl_eth

𝐶 = 8 (SIMD width)

AVX

AVX

▪ Deployed in various hardware
▪ Becoming more popular

VECTORIZATION

𝐶 = 16 (SIMD width)

30

spcl.inf.ethz.ch

@spcl_eth

𝐶 = 8 (SIMD width)

AVX

AVX

warps

„Chunk” size: SIMD width (CPUs, KNLs), warp size (GPUs)𝐶:

▪ Deployed in various hardware
▪ Becoming more popular

VECTORIZATION

𝐶 = 16 (SIMD width)

𝐶 = 32
(warp size)

30

spcl.inf.ethz.ch

@spcl_eth

𝐶 = 8 (SIMD width)

AVX

AVX

warps

„Chunk” size: SIMD width (CPUs, KNLs), warp size (GPUs)𝐶:

▪ Deployed in various hardware
▪ Becoming more popular
▪ Offers a lot of „regular” compute power

VECTORIZATION

𝐶 = 16 (SIMD width)

𝐶 = 32
(warp size)

30

spcl.inf.ethz.ch

@spcl_eth

𝐶 = 8 (SIMD width)

AVX

AVX

warps

„Chunk” size: SIMD width (CPUs, KNLs), warp size (GPUs)𝐶:

▪ Deployed in various hardware
▪ Becoming more popular
▪ Offers a lot of „regular” compute power

VECTORIZATION

𝐶 = 16 (SIMD width)

𝐶 = 32
(warp size)

30

spcl.inf.ethz.ch

@spcl_eth

𝐶 = 8 (SIMD width)

AVX

AVX

warps

„Chunk” size: SIMD width (CPUs, KNLs), warp size (GPUs)𝐶:

▪ Deployed in various hardware
▪ Becoming more popular
▪ Offers a lot of „regular” compute power

VECTORIZATION

Regular

𝐶 = 16 (SIMD width)

𝐶 = 32
(warp size)

30

spcl.inf.ethz.ch

@spcl_eth

𝐶 = 8 (SIMD width)

AVX

AVX

warps

„Chunk” size: SIMD width (CPUs, KNLs), warp size (GPUs)𝐶:

▪ Deployed in various hardware
▪ Becoming more popular
▪ Offers a lot of „regular” compute power

VECTORIZATION

Regular

𝐶 = 16 (SIMD width)

𝐶 = 32
(warp size)

30

spcl.inf.ethz.ch

@spcl_eth

𝐶 = 8 (SIMD width)

AVX

AVX

warps

„Chunk” size: SIMD width (CPUs, KNLs), warp size (GPUs)𝐶:

▪ Deployed in various hardware
▪ Becoming more popular
▪ Offers a lot of „regular” compute power

VECTORIZATION

Regular

𝐶 = 16 (SIMD width)

𝐶 = 32
(warp size)

+

30

spcl.inf.ethz.ch

@spcl_eth

BREADTH-FIRST SEARCH

TRADITIONAL FORMULATION

31
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

BREADTH-FIRST SEARCH

TRADITIONAL FORMULATION

▪ BFS is based on primitives such as queues

31
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

BREADTH-FIRST SEARCH

TRADITIONAL FORMULATION

▪ BFS is based on primitives such as queues

31
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

1) F = {}

BREADTH-FIRST SEARCH

TRADITIONAL FORMULATION

▪ BFS is based on primitives such as queues

31
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

1) F = {}

BREADTH-FIRST SEARCH

TRADITIONAL FORMULATION

▪ BFS is based on primitives such as queues

31
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

1) F = {}
2) F = {2}

BREADTH-FIRST SEARCH

TRADITIONAL FORMULATION

▪ BFS is based on primitives such as queues

31
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

1) F = {}
2) F = {2}

BREADTH-FIRST SEARCH

TRADITIONAL FORMULATION

▪ BFS is based on primitives such as queues

31
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

1) F = {}
2) F = {2}
3) F = {0,3}

BREADTH-FIRST SEARCH

TRADITIONAL FORMULATION

▪ BFS is based on primitives such as queues

31
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

1) F = {}
2) F = {2}
3) F = {0,3}

BREADTH-FIRST SEARCH

TRADITIONAL FORMULATION

▪ BFS is based on primitives such as queues

31
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

1) F = {}
2) F = {2}
3) F = {0,3}
4) F = {1,4}

BREADTH-FIRST SEARCH

TRADITIONAL FORMULATION

▪ BFS is based on primitives such as queues

31
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

1) F = {}
2) F = {2}
3) F = {0,3}
4) F = {1,4}

BREADTH-FIRST SEARCH

TRADITIONAL FORMULATION

▪ BFS is based on primitives such as queues

Distances from
the root

31
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

1) F = {}
2) F = {2}
3) F = {0,3}
4) F = {1,4}

BREADTH-FIRST SEARCH

TRADITIONAL FORMULATION

▪ BFS is based on primitives such as queues

0

1

1
2

2

Distances from
the root

31
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

1) F = {}
2) F = {2}
3) F = {0,3}
4) F = {1,4}

BREADTH-FIRST SEARCH

TRADITIONAL FORMULATION

▪ BFS is based on primitives such as queues

0

1

1
2

2

Distances from
the root

31
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

1) F = {}
2) F = {2}
3) F = {0,3}
4) F = {1,4}

BREADTH-FIRST SEARCH

TRADITIONAL FORMULATION

▪ BFS is based on primitives such as queues

0

1

1
2

2

Distances from
the root

Parents
(predecessors) in
the traversal tree

31
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

BREADTH-FIRST SEARCH

ALGEBRAIC FORMULATION

32
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

BREADTH-FIRST SEARCH

ALGEBRAIC FORMULATION

▪ BFS is a series of matrix-vector products

32
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

BREADTH-FIRST SEARCH

ALGEBRAIC FORMULATION

▪ BFS is a series of matrix-vector products
▪ Graph is modeled by an adjacency matrix

32
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

BREADTH-FIRST SEARCH

ALGEBRAIC FORMULATION

𝐴 =

0 1 1 0 0
1 0 0 1 0
1 0 0 1 0
0 1 1 0 1
0 0 0 1 0

Adjacency Matrix:

▪ BFS is a series of matrix-vector products
▪ Graph is modeled by an adjacency matrix

32
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

BREADTH-FIRST SEARCH

ALGEBRAIC FORMULATION

𝐴 =

0 1 1 0 0
1 0 0 1 0
1 0 0 1 0
0 1 1 0 1
0 0 0 1 0

Adjacency Matrix:

▪ BFS is a series of matrix-vector products
▪ Graph is modeled by an adjacency matrix
▪ Multiplication is done over a semiring

32
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

Semiring:

(ℝ , 𝑜𝑝1, 𝑜𝑝2, 𝑒𝑙1, 𝑒𝑙2)

BREADTH-FIRST SEARCH

ALGEBRAIC FORMULATION

𝐴 =

0 1 1 0 0
1 0 0 1 0
1 0 0 1 0
0 1 1 0 1
0 0 0 1 0

Adjacency Matrix:

▪ BFS is a series of matrix-vector products
▪ Graph is modeled by an adjacency matrix
▪ Multiplication is done over a semiring

32
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

Semiring:

(ℝ , 𝑜𝑝1, 𝑜𝑝2, 𝑒𝑙1, 𝑒𝑙2)

BREADTH-FIRST SEARCH

ALGEBRAIC FORMULATION

𝐴 =

0 1 1 0 0
1 0 0 1 0
1 0 0 1 0
0 1 1 0 1
0 0 0 1 0

Adjacency Matrix:

▪ BFS is a series of matrix-vector products
▪ Graph is modeled by an adjacency matrix
▪ Multiplication is done over a semiring

1 2
3 1

0
2

=
4
2

32
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

Semiring:

(ℝ , 𝑜𝑝1, 𝑜𝑝2, 𝑒𝑙1, 𝑒𝑙2)

BREADTH-FIRST SEARCH

ALGEBRAIC FORMULATION

𝐴 =

0 1 1 0 0
1 0 0 1 0
1 0 0 1 0
0 1 1 0 1
0 0 0 1 0

Adjacency Matrix:

▪ BFS is a series of matrix-vector products
▪ Graph is modeled by an adjacency matrix
▪ Multiplication is done over a semiring

1 2
3 1

0
2

=
4
2

(ℝ,+,∙, 0,1)

32
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

BREADTH-FIRST SEARCH

ALGEBRAIC FORMULATION

Tropical Semiring

(ℝ ∪ ∞ ,𝑚𝑖𝑛, +,∞, 0)

33
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

𝐴′ =

0 1 1 ∞ ∞
1 0 ∞ 1 ∞
1 ∞ 0 1 ∞
∞ 1 1 0 1
∞ ∞ ∞ 1 0

BREADTH-FIRST SEARCH

ALGEBRAIC FORMULATION

Tropical Semiring

(ℝ ∪ ∞ ,𝑚𝑖𝑛, +,∞, 0)

33
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

𝐴 =

0 1 1 0 0
1 0 0 1 0
1 0 0 1 0
0 1 1 0 1
0 0 0 1 0

𝐴′ =

0 1 1 ∞ ∞
1 0 ∞ 1 ∞
1 ∞ 0 1 ∞
∞ 1 1 0 1
∞ ∞ ∞ 1 0

BREADTH-FIRST SEARCH

ALGEBRAIC FORMULATION

Tropical Semiring

(ℝ ∪ ∞ ,𝑚𝑖𝑛, +,∞, 0)

33
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

𝐴 =

0 1 1 0 0
1 0 0 1 0
1 0 0 1 0
0 1 1 0 1
0 0 0 1 0

𝐴′ =

0 1 1 ∞ ∞
1 0 ∞ 1 ∞
1 ∞ 0 1 ∞
∞ 1 1 0 1
∞ ∞ ∞ 1 0

BREADTH-FIRST SEARCH

ALGEBRAIC FORMULATION

Tropical Semiring

(ℝ ∪ ∞ ,𝑚𝑖𝑛, +,∞, 0)

Usually stored using a
sparse format

33
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

𝐴 =

0 1 1 0 0
1 0 0 1 0
1 0 0 1 0
0 1 1 0 1
0 0 0 1 0

𝑓0 =

∞
∞
0
∞
∞

𝐴′ =

0 1 1 ∞ ∞
1 0 ∞ 1 ∞
1 ∞ 0 1 ∞
∞ 1 1 0 1
∞ ∞ ∞ 1 0

BREADTH-FIRST SEARCH

ALGEBRAIC FORMULATION

Tropical Semiring

(ℝ ∪ ∞ ,𝑚𝑖𝑛, +,∞, 0)

Usually stored using a
sparse format

33
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

𝐴 =

0 1 1 0 0
1 0 0 1 0
1 0 0 1 0
0 1 1 0 1
0 0 0 1 0

𝑓0 =

∞
∞
0
∞
∞

𝐴′ =

0 1 1 ∞ ∞
1 0 ∞ 1 ∞
1 ∞ 0 1 ∞
∞ 1 1 0 1
∞ ∞ ∞ 1 0

BREADTH-FIRST SEARCH

ALGEBRAIC FORMULATION

Tropical Semiring

(ℝ ∪ ∞ ,𝑚𝑖𝑛, +,∞, 0)

Usually stored using a
sparse format

Stored with a dense or a
sparse format

33
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

𝐴 =

0 1 1 0 0
1 0 0 1 0
1 0 0 1 0
0 1 1 0 1
0 0 0 1 0

𝑓0 =

∞
∞
0
∞
∞

𝐴′ =

0 1 1 ∞ ∞
1 0 ∞ 1 ∞
1 ∞ 0 1 ∞
∞ 1 1 0 1
∞ ∞ ∞ 1 0

BREADTH-FIRST SEARCH

ALGEBRAIC FORMULATION

Tropical Semiring

(ℝ ∪ ∞ ,𝑚𝑖𝑛, +,∞, 0)

Usually stored using a
sparse format

Stored with a dense or a
sparse format

33
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

𝐴 =

0 1 1 0 0
1 0 0 1 0
1 0 0 1 0
0 1 1 0 1
0 0 0 1 0

𝑓0 =

∞
∞
0
∞
∞

𝐴′ =

0 1 1 ∞ ∞
1 0 ∞ 1 ∞
1 ∞ 0 1 ∞
∞ 1 1 0 1
∞ ∞ ∞ 1 0

𝑓1 = 𝐴′𝑇 ⊗𝑇 𝑓0 =

1
∞
0
1
∞

BREADTH-FIRST SEARCH

ALGEBRAIC FORMULATION

Tropical Semiring

(ℝ ∪ ∞ ,𝑚𝑖𝑛, +,∞, 0)

Usually stored using a
sparse format

Stored with a dense or a
sparse format

33
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

𝐴 =

0 1 1 0 0
1 0 0 1 0
1 0 0 1 0
0 1 1 0 1
0 0 0 1 0

𝑓0 =

∞
∞
0
∞
∞

𝐴′ =

0 1 1 ∞ ∞
1 0 ∞ 1 ∞
1 ∞ 0 1 ∞
∞ 1 1 0 1
∞ ∞ ∞ 1 0

𝑓1 = 𝐴′𝑇 ⊗𝑇 𝑓0 =

1
∞
0
1
∞

BREADTH-FIRST SEARCH

ALGEBRAIC FORMULATION

Tropical Semiring

(ℝ ∪ ∞ ,𝑚𝑖𝑛, +,∞, 0)

Usually stored using a
sparse format

Stored with a dense or a
sparse format

33
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

𝐴 =

0 1 1 0 0
1 0 0 1 0
1 0 0 1 0
0 1 1 0 1
0 0 0 1 0

𝑓0 =

∞
∞
0
∞
∞

𝐴′ =

0 1 1 ∞ ∞
1 0 ∞ 1 ∞
1 ∞ 0 1 ∞
∞ 1 1 0 1
∞ ∞ ∞ 1 0

𝑓1 = 𝐴′𝑇 ⊗𝑇 𝑓0 =

1
∞
0
1
∞

BREADTH-FIRST SEARCH

ALGEBRAIC FORMULATION

Tropical Semiring

(ℝ ∪ ∞ ,𝑚𝑖𝑛, +,∞, 0)

Usually stored using a
sparse format

Stored with a dense or a
sparse format

33
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

𝐴 =

0 1 1 0 0
1 0 0 1 0
1 0 0 1 0
0 1 1 0 1
0 0 0 1 0

𝑓0 =

∞
∞
0
∞
∞

𝐴′ =

0 1 1 ∞ ∞
1 0 ∞ 1 ∞
1 ∞ 0 1 ∞
∞ 1 1 0 1
∞ ∞ ∞ 1 0

𝑓1 = 𝐴′𝑇 ⊗𝑇 𝑓0 =

1
∞
0
1
∞

BREADTH-FIRST SEARCH

ALGEBRAIC FORMULATION

Tropical Semiring

(ℝ ∪ ∞ ,𝑚𝑖𝑛, +,∞, 0)

Usually stored using a
sparse format

Stored with a dense or a
sparse format

33
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

𝐴 =

0 1 1 0 0
1 0 0 1 0
1 0 0 1 0
0 1 1 0 1
0 0 0 1 0

𝑓0 =

∞
∞
0
∞
∞

𝐴′ =

0 1 1 ∞ ∞
1 0 ∞ 1 ∞
1 ∞ 0 1 ∞
∞ 1 1 0 1
∞ ∞ ∞ 1 0

𝑓1 = 𝐴′𝑇 ⊗𝑇 𝑓0 =

1
∞
0
1
∞

BREADTH-FIRST SEARCH

ALGEBRAIC FORMULATION

Tropical Semiring

(ℝ ∪ ∞ ,𝑚𝑖𝑛, +,∞, 0)

Usually stored using a
sparse format

Stored with a dense or a
sparse format

33
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

𝐴 =

0 1 1 0 0
1 0 0 1 0
1 0 0 1 0
0 1 1 0 1
0 0 0 1 0

𝑓0 =

∞
∞
0
∞
∞

𝐴′ =

0 1 1 ∞ ∞
1 0 ∞ 1 ∞
1 ∞ 0 1 ∞
∞ 1 1 0 1
∞ ∞ ∞ 1 0

𝑓1 = 𝐴′𝑇 ⊗𝑇 𝑓0 =

1
∞
0
1
∞

𝑓2 =

1
2
0
1
2

BREADTH-FIRST SEARCH

ALGEBRAIC FORMULATION

Tropical Semiring

(ℝ ∪ ∞ ,𝑚𝑖𝑛, +,∞, 0)

Usually stored using a
sparse format

Stored with a dense or a
sparse format

33
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

𝐴 =

0 1 1 0 0
1 0 0 1 0
1 0 0 1 0
0 1 1 0 1
0 0 0 1 0

𝑓0 =

∞
∞
0
∞
∞

𝐴′ =

0 1 1 ∞ ∞
1 0 ∞ 1 ∞
1 ∞ 0 1 ∞
∞ 1 1 0 1
∞ ∞ ∞ 1 0

𝑓1 = 𝐴′𝑇 ⊗𝑇 𝑓0 =

1
∞
0
1
∞

𝑓2 =

1
2
0
1
2

BREADTH-FIRST SEARCH

ALGEBRAIC FORMULATION

Tropical Semiring

(ℝ ∪ ∞ ,𝑚𝑖𝑛, +,∞, 0)

Usually stored using a
sparse format

Stored with a dense or a
sparse format

How to do this in
practice?

33
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

GRAPH REPRESENTATIONS

COMPRESSED SPARSE ROW (CSR)

34
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

GRAPH REPRESENTATIONS

COMPRESSED SPARSE ROW (CSR)

34
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

GRAPH REPRESENTATIONS

COMPRESSED SPARSE ROW (CSR)

34
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

GRAPH REPRESENTATIONS

COMPRESSED SPARSE ROW (CSR)

Non-zeros

34
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

GRAPH REPRESENTATIONS

COMPRESSED SPARSE ROW (CSR)

Non-zeros are stored in
the val array

...

size: 2m cells

Non-zeros n: number of vertices
m: number of edges 34

M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

GRAPH REPRESENTATIONS

COMPRESSED SPARSE ROW (CSR)

Non-zeros are stored in
the val array

Column indices stored
in the col array

...

size: 2m cells

...

size: 2m cells

Non-zeros n: number of vertices
m: number of edges 34

M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

GRAPH REPRESENTATIONS

COMPRESSED SPARSE ROW (CSR)

Non-zeros are stored in
the val array

Column indices stored
in the col array

...

size: 2m cells

...

size: 2m cells

...

size: n cells

Row indices are stored
in the row array

Non-zeros n: number of vertices
m: number of edges 34

M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

GRAPH REPRESENTATIONS

COMPRESSED SPARSE ROW (CSR)

Non-zeros are stored in
the val array

Column indices stored
in the col array

...

size: 2m cells

...

size: 2m cells

...

size: n cells

Row indices are stored
in the row array

Non-zeros

?

n: number of vertices
m: number of edges 34

M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

GRAPH REPRESENTATIONS

SELL-C-SIGMA

35
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

GRAPH REPRESENTATIONS

SELL-C-SIGMA

chunk size

35
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

GRAPH REPRESENTATIONS

SELL-C-SIGMA

chunk size

35
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

GRAPH REPRESENTATIONS

SELL-C-SIGMA

chunk size

padding

35
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

GRAPH REPRESENTATIONS

SELL-C-SIGMA

𝜎 ∈ [1. . 𝑛]

chunk size
sorting scope

padding

35
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

GRAPH REPRESENTATIONS

SELL-C-SIGMA

𝜎 ∈ [1. . 𝑛]

chunk size
sorting scope

padding

35
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

GRAPH REPRESENTATIONS

SELL-C-SIGMA

𝜎 ∈ [1. . 𝑛]

chunk size
sorting scope

Reductions
fast with

SIMD
operations

padding

35
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

GRAPH REPRESENTATIONS

SELL-C-SIGMA

𝜎 ∈ [1. . 𝑛]

chunk size
sorting scope

Portable

Reductions
fast with

SIMD
operations

padding

35
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

SELL-C-SIGMA + SEMIRINGS + (…) = SLIMSELL

FORMULATIONS

36
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

SELL-C-SIGMA + SEMIRINGS + (…) = SLIMSELL

FORMULATIONS +
(𝑋, 𝑜𝑝1, 𝑜𝑝2, 𝑒𝑙1, 𝑒𝑙2)

(ℝ ∪ {∞},𝑚𝑖𝑛, +,∞, 0)

(ℝ,+,∙, 0,1)

({0,1}, |, &, 0,1)

(ℝ,𝑚𝑎𝑥,⋅, −∞,1)

36
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

SELL-C-SIGMA + SEMIRINGS + (…) = SLIMSELL

FORMULATIONS +
(𝑋, 𝑜𝑝1, 𝑜𝑝2, 𝑒𝑙1, 𝑒𝑙2)

(ℝ ∪ {∞},𝑚𝑖𝑛, +,∞, 0)

(ℝ,+,∙, 0,1)

({0,1}, |, &, 0,1)

(ℝ,𝑚𝑎𝑥,⋅, −∞,1)

36
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

SELL-C-SIGMA + SEMIRINGS + (…) = SLIMSELL

FORMULATIONS +
(𝑋, 𝑜𝑝1, 𝑜𝑝2, 𝑒𝑙1, 𝑒𝑙2)

(ℝ ∪ {∞},𝑚𝑖𝑛, +,∞, 0)

(ℝ,+,∙, 0,1)

({0,1}, |, &, 0,1)

(ℝ,𝑚𝑎𝑥,⋅, −∞,1)

Detailed
formulations are
in the paper ☺

36
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

SELL-C-SIGMA + SEMIRINGS + (…) = SLIMSELL

FORMULATIONS +
(𝑋, 𝑜𝑝1, 𝑜𝑝2, 𝑒𝑙1, 𝑒𝑙2)

(ℝ ∪ {∞},𝑚𝑖𝑛, +,∞, 0)

(ℝ,+,∙, 0,1)

({0,1}, |, &, 0,1)

(ℝ,𝑚𝑎𝑥,⋅, −∞,1)

What vector
operations are

required for each
semiring when using

Sell-C-sigma

Detailed
formulations are
in the paper ☺

36
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

SELL-C-SIGMA + SEMIRINGS + (…) = SLIMSELL

FORMULATIONS +
(𝑋, 𝑜𝑝1, 𝑜𝑝2, 𝑒𝑙1, 𝑒𝑙2)

(ℝ ∪ {∞},𝑚𝑖𝑛, +,∞, 0)

(ℝ,+,∙, 0,1)

({0,1}, |, &, 0,1)

(ℝ,𝑚𝑎𝑥,⋅, −∞,1)

What vector
operations are

required for each
semiring when using

Sell-C-sigma

Detailed
formulations are
in the paper ☺

36
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

COMPARISON TO GRAPH500

Kronecker power-law graphs

Intel KNL, 𝐶 = 16

Dynamic scheduling

log 𝜎 ∈ {20,21,22}

37
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

Summary and outlook

39

spcl.inf.ethz.ch

@spcl_eth

Summary and outlook

39

spcl.inf.ethz.ch

@spcl_eth

Summary and outlook

39

• “Log(Graph): A Near-Optimal High-
Performance Graph Representation” –
ACM PACT’18

• Minimal storage bounds for graphs
during processing

Log(Graph)

spcl.inf.ethz.ch

@spcl_eth

Summary and outlook

39

• “Log(Graph): A Near-Optimal High-
Performance Graph Representation” –
ACM PACT’18

• Minimal storage bounds for graphs
during processing

Log(Graph)

• “To Push or To Pull: On Reducing
Communication and Synchronization in
Graph Computations” – ACM HPDC’17

• Fundamental principles of parallel graph
processing

Push vs. Pull

spcl.inf.ethz.ch

@spcl_eth

Summary and outlook

39

• “Log(Graph): A Near-Optimal High-
Performance Graph Representation” –
ACM PACT’18

• Minimal storage bounds for graphs
during processing

Log(Graph)

• “To Push or To Pull: On Reducing
Communication and Synchronization in
Graph Computations” – ACM HPDC’17

• Fundamental principles of parallel graph
processing

Push vs. Pull

• “SlimSell: A Vectorized Graph
Representation for Breadth-First Search”
– IEEE IPDPS’17

• Vectorization schemes for parallel graph
processing

Vectorization of Graph Computations

spcl.inf.ethz.ch

@spcl_eth

Summary and outlook

39

• “Survey and Taxonomy of Lossless Graph
Compression and Space-Efficient Graph
Representations” – arXiv

• Comprehensive overview
• 54 pages, 465 references

Graph Compression Survey

• “Log(Graph): A Near-Optimal High-
Performance Graph Representation” –
ACM PACT’18

• Minimal storage bounds for graphs
during processing

Log(Graph)

• “To Push or To Pull: On Reducing
Communication and Synchronization in
Graph Computations” – ACM HPDC’17

• Fundamental principles of parallel graph
processing

Push vs. Pull

• “SlimSell: A Vectorized Graph
Representation for Breadth-First Search”
– IEEE IPDPS’17

• Vectorization schemes for parallel graph
processing

Vectorization of Graph Computations

spcl.inf.ethz.ch

@spcl_eth

Summary and outlook

39

• “Survey and Taxonomy of Lossless Graph
Compression and Space-Efficient Graph
Representations” – arXiv

• Comprehensive overview
• 54 pages, 465 references

Graph Compression Survey

• “Communication-Avoiding Parallel
Minimum Cuts and Connected
Components” – ACM PPoPP’18

• Uses randomization to achieve O(1)
global alltoall steps

Comm-avoiding Graph Processing

• “Log(Graph): A Near-Optimal High-
Performance Graph Representation” –
ACM PACT’18

• Minimal storage bounds for graphs
during processing

Log(Graph)

• “To Push or To Pull: On Reducing
Communication and Synchronization in
Graph Computations” – ACM HPDC’17

• Fundamental principles of parallel graph
processing

Push vs. Pull

• “SlimSell: A Vectorized Graph
Representation for Breadth-First Search”
– IEEE IPDPS’17

• Vectorization schemes for parallel graph
processing

Vectorization of Graph Computations

spcl.inf.ethz.ch

@spcl_eth

Summary and outlook

39

• “Survey and Taxonomy of Lossless Graph
Compression and Space-Efficient Graph
Representations” – arXiv

• Comprehensive overview
• 54 pages, 465 references

Graph Compression Survey

• “Communication-Avoiding Parallel
Minimum Cuts and Connected
Components” – ACM PPoPP’18

• Uses randomization to achieve O(1)
global alltoall steps

Comm-avoiding Graph Processing

• “Scaling Betweenness Centrality using
Communication-Efficient Sparse Matrix
Multiplication” – ACM SC’17

• More on the algebraic view – complex
example, large-scale sparse matrices

Algebraic Betweenness Centrality

• “Log(Graph): A Near-Optimal High-
Performance Graph Representation” –
ACM PACT’18

• Minimal storage bounds for graphs
during processing

Log(Graph)

• “To Push or To Pull: On Reducing
Communication and Synchronization in
Graph Computations” – ACM HPDC’17

• Fundamental principles of parallel graph
processing

Push vs. Pull

• “SlimSell: A Vectorized Graph
Representation for Breadth-First Search”
– IEEE IPDPS’17

• Vectorization schemes for parallel graph
processing

Vectorization of Graph Computations

spcl.inf.ethz.ch

@spcl_eth

Summary and outlook

39

• “Survey and Taxonomy of Lossless Graph
Compression and Space-Efficient Graph
Representations” – arXiv

• Comprehensive overview
• 54 pages, 465 references

Graph Compression Survey

• “Substream-Centric Maximum Matchings
on FPGA” – FPGA’19

• New paradigm for parallelizing across
substreams

• Integrates with pipelining in HW/FPGA
• Blueprint for efficient processing in HW

Streaming Graphs on FPGA

• “Communication-Avoiding Parallel
Minimum Cuts and Connected
Components” – ACM PPoPP’18

• Uses randomization to achieve O(1)
global alltoall steps

Comm-avoiding Graph Processing

• “Scaling Betweenness Centrality using
Communication-Efficient Sparse Matrix
Multiplication” – ACM SC’17

• More on the algebraic view – complex
example, large-scale sparse matrices

Algebraic Betweenness Centrality

• “Log(Graph): A Near-Optimal High-
Performance Graph Representation” –
ACM PACT’18

• Minimal storage bounds for graphs
during processing

Log(Graph)

• “To Push or To Pull: On Reducing
Communication and Synchronization in
Graph Computations” – ACM HPDC’17

• Fundamental principles of parallel graph
processing

Push vs. Pull

• “SlimSell: A Vectorized Graph
Representation for Breadth-First Search”
– IEEE IPDPS’17

• Vectorization schemes for parallel graph
processing

Vectorization of Graph Computations

spcl.inf.ethz.ch

@spcl_eth

Summary and outlook

39

• “Survey and Taxonomy of Lossless Graph
Compression and Space-Efficient Graph
Representations” – arXiv

• Comprehensive overview
• 54 pages, 465 references

Graph Compression Survey

• “Substream-Centric Maximum Matchings
on FPGA” – FPGA’19

• New paradigm for parallelizing across
substreams

• Integrates with pipelining in HW/FPGA
• Blueprint for efficient processing in HW

Streaming Graphs on FPGA

• “Survey and Taxonomy of Models and
Algorithms for Streaming Graph
Processing” – arXiv

• Overview of streaming algorithms,
approximations, research gaps

• Way forward for FPGA?

Streaming Graphs Survey

• “Communication-Avoiding Parallel
Minimum Cuts and Connected
Components” – ACM PPoPP’18

• Uses randomization to achieve O(1)
global alltoall steps

Comm-avoiding Graph Processing

• “Scaling Betweenness Centrality using
Communication-Efficient Sparse Matrix
Multiplication” – ACM SC’17

• More on the algebraic view – complex
example, large-scale sparse matrices

Algebraic Betweenness Centrality

• “Log(Graph): A Near-Optimal High-
Performance Graph Representation” –
ACM PACT’18

• Minimal storage bounds for graphs
during processing

Log(Graph)

• “To Push or To Pull: On Reducing
Communication and Synchronization in
Graph Computations” – ACM HPDC’17

• Fundamental principles of parallel graph
processing

Push vs. Pull

• “SlimSell: A Vectorized Graph
Representation for Breadth-First Search”
– IEEE IPDPS’17

• Vectorization schemes for parallel graph
processing

Vectorization of Graph Computations

spcl.inf.ethz.ch

@spcl_eth

Summary and outlook

39

• “Survey and Taxonomy of Lossless Graph
Compression and Space-Efficient Graph
Representations” – arXiv

• Comprehensive overview
• 54 pages, 465 references

Graph Compression Survey

• “Substream-Centric Maximum Matchings
on FPGA” – FPGA’19

• New paradigm for parallelizing across
substreams

• Integrates with pipelining in HW/FPGA
• Blueprint for efficient processing in HW

Streaming Graphs on FPGA

• “Survey and Taxonomy of Models and
Algorithms for Streaming Graph
Processing” – arXiv

• Overview of streaming algorithms,
approximations, research gaps

• Way forward for FPGA?

Streaming Graphs Survey

• “Graph Processing on FPGAs: Taxonomy,
Survey, Challenges” – arXiv

• Relatively young field of graph processing
on FPGAs / in hardware

• Identify research opportunities

Graphs on FPGA Survey

• “Communication-Avoiding Parallel
Minimum Cuts and Connected
Components” – ACM PPoPP’18

• Uses randomization to achieve O(1)
global alltoall steps

Comm-avoiding Graph Processing

• “Scaling Betweenness Centrality using
Communication-Efficient Sparse Matrix
Multiplication” – ACM SC’17

• More on the algebraic view – complex
example, large-scale sparse matrices

Algebraic Betweenness Centrality

• “Log(Graph): A Near-Optimal High-
Performance Graph Representation” –
ACM PACT’18

• Minimal storage bounds for graphs
during processing

Log(Graph)

• “To Push or To Pull: On Reducing
Communication and Synchronization in
Graph Computations” – ACM HPDC’17

• Fundamental principles of parallel graph
processing

Push vs. Pull

• “SlimSell: A Vectorized Graph
Representation for Breadth-First Search”
– IEEE IPDPS’17

• Vectorization schemes for parallel graph
processing

Vectorization of Graph Computations

spcl.inf.ethz.ch

@spcl_eth

Summary and outlook

39

• “Survey and Taxonomy of Lossless Graph
Compression and Space-Efficient Graph
Representations” – arXiv

• Comprehensive overview
• 54 pages, 465 references

Graph Compression Survey

• “Substream-Centric Maximum Matchings
on FPGA” – FPGA’19

• New paradigm for parallelizing across
substreams

• Integrates with pipelining in HW/FPGA
• Blueprint for efficient processing in HW

Streaming Graphs on FPGA

• “Survey and Taxonomy of Models and
Algorithms for Streaming Graph
Processing” – arXiv

• Overview of streaming algorithms,
approximations, research gaps

• Way forward for FPGA?

Streaming Graphs Survey

• “Graph Processing on FPGAs: Taxonomy,
Survey, Challenges” – arXiv

• Relatively young field of graph processing
on FPGAs / in hardware

• Identify research opportunities

Graphs on FPGA Survey

• “Communication-Avoiding Parallel
Minimum Cuts and Connected
Components” – ACM PPoPP’18

• Uses randomization to achieve O(1)
global alltoall steps

Comm-avoiding Graph Processing

• “Scaling Betweenness Centrality using
Communication-Efficient Sparse Matrix
Multiplication” – ACM SC’17

• More on the algebraic view – complex
example, large-scale sparse matrices

Algebraic Betweenness Centrality

• “Log(Graph): A Near-Optimal High-
Performance Graph Representation” –
ACM PACT’18

• Minimal storage bounds for graphs
during processing

Log(Graph)

• “To Push or To Pull: On Reducing
Communication and Synchronization in
Graph Computations” – ACM HPDC’17

• Fundamental principles of parallel graph
processing

Push vs. Pull

• “SlimSell: A Vectorized Graph
Representation for Breadth-First Search”
– IEEE IPDPS’17

• Vectorization schemes for parallel graph
processing

Vectorization of Graph Computations

A big challenges ahead: develop a
framework to integrate all techniques!

SPCL’s approach: stateful dataflow graphs

We’re always hiring excellent PhD students and postdocs
at SPCL/ETH at spcl.inf.ethz.ch/Jobs

