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COMPARISON TO GRAPH500

Kronecker power-law graphs

Intel KNL, 𝐶 = 16

Dynamic scheduling

log 𝜎 ∈ {20,21,22}
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A big challenges ahead: develop a 
framework to integrate all techniques!

SPCL’s approach: stateful dataflow graphs

We’re always hiring excellent PhD students and postdocs 
at SPCL/ETH at spcl.inf.ethz.ch/Jobs


