
A Space-Efficient Parallel Algorithm for
Computing Betweenness Centrality in

Distributed Memory
Nick Edmonds

Open Systems Laboratory
Indiana University

Bloomington, IN 47405
ngedmond@osl.iu.edu

Torsten Hoefler∗
National Center of Supercomputing Applications

University of Illinois at Urbana-Champaign
Urbana, IL 61801

htor@illinois.edu

Andrew Lumsdaine
Open Systems Laboratory

Indiana University
Bloomington, IN 47405

lums@osl.iu.edu

Abstract—Betweenness centrality is a measure based
on shortest paths that attempts to quantify the relative
importance of nodes in a network. As computation of
betweenness centrality becomes increasingly important in
areas such as social network analysis, networks of interest
are becoming too large to fit in the memory of a single
processing unit, making parallel execution a necessity. Par-
allelization over the vertex set of the standard algorithm,
with a final reduction of the centrality for each vertex, is
straightforward but requires Ω(|V |2) storage. In this paper
we present a new parallelizable algorithm with low spatial
complexity that is based on the best known sequential
algorithm. Our algorithm requires O(|V | + |E|) storage
and enables efficient parallel execution. Our algorithm is
especially well suited to distributed memory processing
because it can be implemented using coarse-grained par-
allelism. The presented time bounds for parallel execution
of our algorithm on CRCW PRAM and on distributed
memory systems both show good asymptotic performance.
Experimental results with a distributed memory computer
show the practical applicability of our algorithm.

I. INTRODUCTION

Centrality indices are an important measure of the
relative importance of nodes in sparse networks [29].
Here we discuss betweenness centrality [2], [16] as it
is one of the more commonly used metrics and one of
the more difficult to compute efficiently. Betweenness
centrality is based on determining the number of shortest
paths from s to t (σst) in a graph G = (V,E) for all
possible vertex pairs (s, t) ∈ V × V . The betweenness
centrality of v is defined as follows:

BC(v) =
∑

s6=v 6=t∈V

σst(v)

σst

where σst(v) is the number of shortest paths from s
to t which pass through v. A straightforward method for
computing betweenness centrality is to solve the all-pairs

∗ Most work performed while the author was at Indiana University

shortest paths (APSP) problem. Fast sequential methods
for solving APSP are known [15], [22], [31]. These
dynamic-programming methods are straightforward to
parallelize but require O(|V |2) space to store their result.
A space and time efficient algorithm has been proposed
by Brandes [9] but it is difficult to parallelize in a coarse
grained fashion because it is based on a label-setting
single-source shortest path algorithm.

The key idea in Brandes’ algoritm is that pairwise
dependencies δst(v) = σst(v)

σst
can be aggregated without

storing all of them explicitly. By defining the dependency
of a source vertex s ∈ V on a vertex v ∈ V as
δs(v) =

∑
t∈V δst(v) the betweenness centrality of a

vertex v can be expressed as BC(v) =
∑
s6=v∈V δs(v).

Brandes shows that the dependency values δs(v) satisfy
the following recursive relation:

δs(v) =
∑

w:d(s,w)=d(s,v)+c(u,v)

σsv
σsw
· (1 + δs(w))

Where the weight function c(u, v) returns the positive
weight of an edge from u→ v.

The sequential algorithm described in Algoritm 1 thus
computes betweenness by first determining the distance
and shortest path counts from s to each vertex (lines
9 to 18). Second, S is used to revisit the vertices by
non-increasing distance from s and dependencies are
accumulated (lines 20 to 24).

In this work we present a space efficient algorithm for
computing the betweenness centrality of the vertices in
a sparse graph. We present analyses using the CRCW
PRAM [20] and LogGP [1] models which demonstrate
that our algorithm is appropriate for both fine and
coarse-grained parallelism and discuss tradeoffs that we
made during the algorithm design. Finally we present
experimental results which demonstrate the strong and
weak scalability of our algorithm using the Parallel Boost
Graph Library [18].

Algorithm 1: Sequential algorithm for computing
betweenness centrality in a weighted graph using
Brandes’ technique for aggregating dependencies

Input: Graph G, a weight function c(u, v) returning
the weight of an edge from u→ v

Output: ∀ v ∈ V : CB [v] the betweenness centrality
∀ v ∈ V : CB(v) = 0;1

foreach s ∈ V do2

S ← empty stack;3

∀w ∈ V : P [w]← empty list;4

∀ t ∈ V : σ[t]← 0; σ[s]← 1;5

∀ t ∈ V : dist[t]←∞; dist[s]← 0;6

PQ← empty priority queue which returns7

elements in non-decreasing order by dist;
enqueue s→ PQ;8

while PQ not empty do9

dequeue v ← PQ;10

push v → S;11

foreach neighbor w of v do12

if dist[v] + c(v, w) < dist[w] then13

dist[w] = dist[v] + c(v, w);14

enqueue w → PQ;15

if dist[w] = dist[v] + c(v, w) then16

σ[w]← σ[w] + σ[v];17

append v → P [w];18

∀w ∈ V : δ[v]← 0;19

while S not empty do20

pop w ← S;21

foreach v ∈ P [w] do22

δ[v]← δ[v] + σ[v]
σ[w] · (1 + δ[w]);23

if w 6= s then CB [w]← CB [w] + δ[w];24

A. Previous Work

Our algorithm makes use of a parallelizable label-
correcting single-source shortest path (SSSP) algorithm
such as [12], [27]. A variety of performance results
for parallel solutions to the single-source shortest paths
problem have been presented [14], [24]. Parallel solu-
tions to the all-pairs shortest paths problem have also
been presented [21], [23].

A parallel algorithm for betweenness centrality has
been presented in [4], however the algorithm uses a
label-setting algorithm to solve the SSSP problem and
leverages fine-grained parallelism by relaxing edges
incident to each vertex in parallel. This approach exposes
some parallelism for symmetric multiprocessors but is
unsuitable for distributed memory systems due to the
high overhead of distributing the available work, and the
relatively small amount of work available at any given

a b

c

h

g
i

d
f

e

a b

c

h

g
i

d
f

e

a b

c

h

g
i

d
f

e

Fig. 1: Single graph replicated across three processes.

time. The algorithm presented also leverages coarse
grained parallelism by solving the SSSP problem from
multiple sources in parallel. This approach requires
storing the solution to the SSSP problem for each source
and is thus contrary to our goal of a space efficient
algorithm. While greater speedup per processing unit
may be attained by leveraging fine-grained parallelism
on SMPs, our distributed memory implementation is
capable of scaling beyond the size of the available
memory on a single SMP. Moreover, each node in a
distributed memory cluster is not constrained to a single
thread of execution. This presents the possibility of
leveraging fine-grained parallelism at the node level and
coarse-grained parallelism to enable scaling as well as
providing additional computational resources.

Subsequent work observes that successor sets yield
better locality than predecessor sets for unweighted
betweenness centrality [25], but this work still lever-
ages only fine-grained parallelism and uses breadth-first
search to compute unweighted betweenness centrality
rather than SSSP to compute weighted betweenness
centrality.

The time-optimal coarse-grained method of solving
each SSSP in parallel has been presented [32] but as
previously stated, is space inefficient. This algorithm
requires the graph to be replicated as in Figure 1. We
have previously implemented this algorithm but it proved
incapable of dealing with large scale graphs which
cannot be stored in the memory of a single processing
unit. Given the large networks which need to be analyzed
such as web graphs or global social networks, a scalable
algorithm able to operate on a distributed representation
of the network is essential. Our algorithm operates on
graphs distributed by vertex with edges stored with their
sources, as shown in Figure 2.

a b

c

h

g
i

d
f

e

Fig. 2: Single graph distributed across three processes.

B. Notation

Here we introduce the notation we will use in the
remainder of the paper. The input graph is defined by
G = (V,E), the number of vertices in G is |V | = n and
the number of edges is |E| = m, d denotes the average
vertex degree. U(X,Y] denotes a uniform distribution on
the interval (X,Y]. σs[v] denotes the number of shortest
paths which pass through a vertex v for a given source
s, while d(s, t) denotes the minimal distance between s
and t, i.e., the length of a shortest path from s→ t.

We describe our algorithm in detail in the next section.
In Section III, we analyze the time and space complexity
of the algorithm on random Erdős-Rényi graphs with
random edge weights. Erdős-Rényi graphs were chosen
for these analyses due to the rich theoretical foundations
available on which to build. Performance and simulation
results of our algorithm on both Erdős-Rényi and scale-
free graphs are presented in Section IV.

II. REVISED BETWEENNESS CENTRALITY
ALGORITHM

Our proposed algorithm consists of three phases.
The first phase is, similarly to Brandes’ betweenness
centrality algorithm, the computation of all shortest path
counts and the subgraph G′s = (V,E′) of G representing
all shortest paths in G from s. Informally, an edge
(u, v) ∈ E is also an edge in G′s iff there exists a
shortest path from s to v that contains (u, v). In Brandes’
original algorithm [9], the subgraph G′s was represented
by the set of predecessors Ps(v) = {u ∈ V : (u, v) ∈
E, d(s, v) = d(s, u) + c(u, v)} of a vertex v. The
shortest-path count σs[v] of a vertex v is updated when
a vertex is finished (all shortest paths from s → v
have been determined). The combinatorial shortest path
counting (Line 23 in Algorithm 1 and Lemma 3 in [9])
is only correct for label-setting SSSP algorithms, such as
Dijkstra’s algorithm [13] in weighted graphs or breadth
first search (BFS) in unweighted graphs. However, label-
setting algorithms often offer very low parallelism due to
the requirement that only the vertices with equal minimal

a b

c

h

g
i

d
f

e

 1

 2

1

 1

 3 1

 2
 1

1

 1
 1

3

Fig. 3: An example shortest path DAG (G′). Dotted edges
represent edges in G but not in G′.

distance to the start vertex can be relaxed in parallel.
Label-correcting algorithms, such as Bellman-Ford [5]
and ∆-stepping [27] offer more parallelism and linear
average runtime on random graphs. For a discussion
of label-setting versus label-correcting algorithms, refer
to [26]. Thus, it is often useful to employ label-correcting
algorithms in parallel environments.

In our method, outlined in Algorithm 2, we relax the
label-setting requirement of Brandes’ algorithm in order
to enable the use of different label-correcting algorithms
that can be implemented on parallel computers. We do
this by storing not only the predecessor set Ps(v) for
each vertex, but also the successor set Ss(v) = {u ∈
V : (v, u) ∈ E, d(s, v) = d(s, u) + c(u, v)}. This set
can be used to traverse G′s in non-decreasing distance
from s after all shortest paths have been found. This
allows us to accumulate the number of shortest paths,
σs, accordingly. An example shortest path DAG G′ (and
thus Ps and Ss) is shown in Figure 3. For example,
Ps(g) = {h, i} and Ss(i) = {g} in the depicted graph.

We note that the successor set Ss can be derived from
the predecessor set Ps, and vice versa, by transposing the
graph represented by the set (see Step 2 in Algorithm 2).
Thus, a shortest path algorithm only needs to return
one of the sets; however, under some circumstances, it
might be beneficial to generate both sets at the same
time (which would effectively merge Steps 1 and 2 in
Algorithm 2).

We chose ∆-stepping to compute shortest paths (Step
1 in Algorithm 2) because it is work efficient and readily
lends itself to being implemented in distributed memory.
∆-stepping replaces the priority queue in Dijkstra’s
algorithm with an array B of buckets such that B[i]
stores {v ∈ V : tent[v] ∈ [i∆, (i+ 1)∆]} where tent[v]
is the tentative distance from s to v. ∆-stepping for
weighted graphs is outlined in Algorithm 3 and 4 while
the algorithm degenerates to breadth first search in the
unweighted case.

Algorithm 2: Distributed Betweenness Centrality
Input: Graph G
∀ v ∈ V : CB(v) = 0;1

foreach s ∈ V do2

// Step 1: Compute shortest path
predecessors

Ps = shortestpaths(G, s);3

// Step 2: Compute shortest path
successors from predecessors

Ss = transpose(Ps);4

// Step 3: Compute path counts in
DAG of shortest paths

(σs, Q) = pathcounts(Ss, s);5

// Step 4: Update betweenness
centrality

CB = updatecentrality(Ps, Q, σs, CB);6

If a label-correcting algorithm provides some informa-
tion about when the distance to a node is settled then path
counts can be computed incrementally during the course
of the shortest paths algorithm and Ss is unnecessary
(merging Step 1, 2 and 3 in Algorithm 2).

Algorithm 3: shortestpaths(G, s) – find shortest
paths predecessor map – ∆-stepping [27]

Input: Weighted graph G = (V,E), vertex s
Output: ∀ v ∈ V : predecessors Ps = {pi} on all i

shortest paths (s, . . . , pi, v)
∀ v ∈ V : tent[v] =∞;Ps[v] = ∅;1

i = 0; B[0] = s; tent[s] = 0;2

while B not empty do3

D = ∅;4

while B[i] 6= ∅ do5

R = {(v, w)| ∀ v ∈ B[i] ∧ c(v, w) ≤ ∆};6

D = D ∪B[i]; B[i] = ∅;7

foreach (v, w) ∈ R do relax(v, w);8

R = {(v, w)| ∀ v ∈ D ∧ c(v, w) > ∆};9

foreach (v, w) ∈ R do relax(v, w);10

i = i+ 1;11

For ∆-stepping, this means that once a bucket B[i] is
emptied (line 11 in Algorithm 3), all vertices removed
from B[i] are settled and it would be possible to
determine the path count σs[v], v ∈ B[i]. However,
this requires finding the set A = {u ∈ B[0..i − 1] :
tent[u] + c(u, v) = tent[v]} and then traversing B[i] in
non-increasing order of distance from s starting with the
vertices in A. Finding A can be done in two ways. A data
structure containing all settled vertices that have paths
to non-settled vertices can be maintained and traversed

Algorithm 4: relax(v, w) – relax part of ∆-stepping
Input: Vertices v, w ∈ V
Output: Updated B, Ps[w], and tent[w]
dist = tent[v] + c(v, w);1

if dist < tent[w] then2

if tent[w] <∞ then3

B[btent[w]/∆c] = B[btent[w]/∆c]\{w};4

B[bdist/∆c] = B[bdist/∆c] ∪ {w};5

tent[w] = dist;6

Ps[w] = {v};7

else if dist = tent[v] then8

Ps[w] = Ps[w] ∪ {v};9

after each bucket is settled. Alternately, a topological
ordering of v ∈ B[i] w.r.t. G′ can be found and traversed
backwards. Because each vertex in the settled set might
be visited multiple times, it is more work efficient to
postpone the determination of σs until all vertices have
been settled and perform a single traversal of G′ from s.

Algorithm 5: pathcounts(Ss, s) – accumulate short-
est path counts

Input: Successor set Ss[v],∀v ∈ V , starting vertex s
Output: Number of shortest paths σ[v], ∀v ∈ V , Q,

a queue consisting of all vertices with no
successors

localQ← empty queue;1

σ[t] = 0,∀t ∈ V ;σ[s] = 1;2

enqueue s→ localQ;3

while localQ not empty do4

dequeue v ← localQ;5

foreach w ∈ S[v] do6

σ[w] = σ[w] + σ[v];7

enqueue w → localQ;8

if Ss[v] = empty list then9

enqueue v → Q;10

We chose to compute the pathcount σs[v] from s to
all v ∈ V after all shortest paths have been found. This
is done in Step 3 of Algorithm 2 which is outlined in
Algorithm 5 as a level-synchronized breadth first search.
Level-synchronized means that no vertex in level i+1 is
discovered before every vertex in level i is discovered.
This traversal requires the successor set Ss[v], v ∈ V .
When G is unweighted Ss can easily be computed at the
same time as Ps in the shortest paths calculation. When
G is weighted however, Ps[v] is cleared when a shorter
path to v is found. Clearing Ps[v] requires an update to
Ss of the form ∀w ∈ Ps[v] : Ss[w] = Ss[w] \ v. This

operation adds Θ(|Ps[v]|) work to each edge relaxation,
and might require time-consuming communication in
distributed memory. For this reason when G is weighted,
we determine Ps during the shortest paths calculation
and calculate Ss from Ps after the shortest paths calcu-
lation is complete in the optional Step 2 of Algorithm 2.

The fourth and final phase of our algorithm consists of
traversing G′ in order of non-increasing distance from s
and calculating the dependency (δ) and centrality (CB),
for all vertices similarly to Brandes’ algorithm. This is
shown in Algorithm 6.

Algorithm 6: updatecentrality(Ps, Q, σ, δ) – up-
date betweenness centrality

Input: Predecessor set Ps[v], queue Q,
betweenness centrality CB [v], shortest path
counts σ[v], ∀v ∈ V ,

Output: Updated betweenness centrality CB [v],
∀v ∈ V

// Compute dependency and
centrality, Q returns vertices
in non-increasing distance from
s

∀t ∈ V : updates[t] = δ[t] = 0;1

while Q not empty do2

dequeue w ← Q;3

foreach v ∈ Ps[w] do4

updates[v] = updates[v] + 1;5

if updates[v] ≥ |Ss[v]| then6

δ[v] = δ[v] + σ[v]
σ[w] · (1 + δ[w]);7

enqueue v → Q;8

if w 6= s then9

CB [w] = CB [w] + δ[w];10

III. ANALYSIS

In our analysis, we consider random Erdős-Rényi
graphs G(n, p) with the edge-probability p = d/n. We
analyze unweighted graphs as well as weighted graphs
where the weight function c(u, v) returns values from a
uniform random distribution (0, 1], as well as integers
in (0, C] : C < ∞. The actual number of edges in G
is m = Θ(dn) whp1. Our analysis assumes the most
interesting case, d = O(log n) (whp all but the c log n
smallest edges per node can be ignored without changing
the shortest path for some constant c [17], [19]).

Our main motivation in designing this algorithm
was to be more space efficient than all-pairs shortest

1We use the term “whp” throughout the document to say “with high
probability”, i.e., the probability for some event is at least 1 − nε for
a constant ε > 0.

paths algorithms such as Floyd-Warshall [15], [31] and
to be capable of benefiting from both coarse grained
and fine grained parallelism with large graphs. It is
straightforward to observe that betweenness centrality
can be implemented in terms of n independent SSSP
calculations and a reduction operation on the results of
those n SSSPs. The time-optimal method to compute
betweenness centrality would thus be to perform n
SSSPs in parallel. This approach requires Ω(n2) space to
store any of the several O(n) data structures such as the
path count or dependency of each vertex. Our algorithm
requires O(m + n) space in practice and is therefore
more appropriate for the analysis of very large graphs
on distributed memory machines.

First, we analyze the structure of the shortest paths
subgraph G′; m′ denotes the number of edges in G′.

Lemma 1. The number of equal weight paths in G, with
c(u, v) returning values from U(0, 1], is 0 whp.

Proof: By the Central Limit Theorem, the path
length F , a sum of independent samples from the
continuous uniform distribution U(0, 1] approximates
a normal distribution for large n. If we assume that
U(0, 1] ⊂ R+, i.e., U(0, 1] is infinitely discretizable,
then the probability that a random sample from F is
equal to a specific b ∈ U(0, 1] is ≈ 0.
In general, given a path of weight δ, the probability
that there exists another path of weight δ approaches 0
as the number of possible edge weights approaches ∞.
Thus there are no equal weight paths in G, with c(u, v)
returning values from U(0, 1], whp.

Lemma 2. When G′ has edges weighted from U(0, 1],
then m′ ≤ n− 1 whp.

Proof: In a connected graph any edge set which
connects all the vertices contains at least n−1 edges. We
conclude with Lemma 1 that there are no equal length
paths whp, so that the number of edges m′ can be at
most n − 1 if the graph is connected and must be less
than n− 1 if the graph is not connected.

Lemma 3. The number of edges m′ in G′, when G′ has
integer weighted edges in (0, C] : C <∞, is O(dn).

Proof: The number of edges in G is Θ(dn) whp,
E′ ⊆ E thus m′ must be O(dn).

The term m′ appears in a number of subsequent
bounds. Determining a tight bound on m′ when c(u, v)
returns integers in (0, C], C < ∞ remains an open
problem [6]. We have shown that when c(u, v) returns
values from U(0, 1], m′ ≤ n − 1 whp. We conclude
that in the most interesting cases of finitely discretizable
edge weights and d ∈ O(log n), m′ is bounded between
O(n) (Lemma 2) and O(n log n) (Lemma 3).

A. Space complexity
Our algorithm contains a number of data structures

which store data for each vertex including CB , σ, δ, the
tentative distance (tent) for the SSSP calculations, and
updates, a counter we utilize to traverse the graph in
dependency order from sink(s) to source. Additionally
we maintain Ps and Ss which record adjacencies in
G′. We maintain several queues including the queue for
the SSSP calculation (which in our implementation is
actually the array of buckets for ∆-stepping) as well as
the queues used to traverse the graph in path count and
dependency/centrality computations.

Data Distribution: Vertices in G can be randomly as-
signed to processing units (PUs) by generating an array
of random PU indices. This can be performed in O(n/P)
time. Edges can be stored on the PU which owns the
source of the edge. Storing the graph in this fashion
requires Θ(m+ n) space.

Values Associated With Vertices: CB , σ, δ, tent, and dep
are all arrays of size Θ(n).

SSSP Queue: Each of the P PUs maintains its own
queues and stores there the queued vertices it is respon-
sible for. At most m edges can be queued, therefore,
each queue is O(m/P) whp.

Predecessor and Successor Adjacencies: Each node will
have m′

/n expected entries in the predecessor map. For
random graphs, predecessors are evenly distributed and
each node has an expected number of predecessors m′

/n.
By Chernoff bounds, a buffer of size O(m

′
/n + logm′)

per node suffices whp. Data can be placed in the buffer
using randomized dart throwing [28]. Periodically check-
ing to see if dart throwing has terminated and increasing
the buffer size if necessary preserves correctness in the
unlikely case that a buffer is too small. This addi-
tional space is only necessary for arbitrary-write CRCW
PRAMs to handle concurrent updates to the predecessor
set of a single vertex. In models that do not have to
handle concurrent writes (including our implementation),
O(m

′
/n) space suffices by using a dynamic table [11].

Thus the space required to store all predecessor and
successor adjacencies is O(m′ + n logm′).

Shortest Paths Queue: Traversing G′ can be performed
in O(log n) phases whp. Each phase contains O(n/logn)
nodes therefore O(n/P logn) space per PU suffices whp.

Dependency/Centrality Dequeue: Computing dependen-
cy/centrality is equivalent to a breadth first search from
sink to source and thus the space from the shortest paths
queue above can be reused.

Theorem 1. Our modified betweenness centrality algo-
rithm on random graphs from G(n, dn) with d ∈ O(log n)

requires O(m + n logm′) space on an arbitrary-write
CRCW PRAM. In a machine which does not allow
concurrent writes O(m+ n) space suffices.

Proof: The space required by the various Θ(n) data
structures and the queues used in the shortest paths and
dependency/centrality computation is subsumed by the
space required by Ps and Ss, which areO(m′+n logm′)
and the size of the SSSP queue which is O(m). Because
m′ ≤ m, O(m′+n logm′+m) = O(m+n logm′). In
a machine where concurrent writes to the same location
are not allowed a reduction must be done requiring
O(logP) time, reducing the space required to O(m+n).

B. PRAM Analysis

We now explain how Algorithm 2 can be efficiently
implemented on an arbitrary-write CRCW PRAM.

Shortest Paths Calculation: A variety of shortest paths
algorithms could be used in the portion of the algorithm
which computes predecessor and successor maps in
G [12], [27]. ∆-stepping has reasonable expected run-
time and is straightforward to implement in distributed
memory. ∆-stepping can solve the single source shortest
path problem on graphs of the aforementioned class in
O(log3 n/ log log n) time using dn log logn

log3 n
processing

units (PUs) on a CRCW PRAM [27]. When G is
unweighted the shortest paths calculation degenerates to
a breadth first search and can be solved in O(log n) time.

Placing predecessors in Ps can be performed using
randomized dart throwing without adding more than
O(1) time per edge relaxation. The output of the shortest
paths computation is Ps which represents the edges in
G′.

Calculating Successors given Predecessors: The prede-
cessor lists allow G′ to be traversed from sink to source.
If G is unweighted, successor lists can be computed at the
same time as the predecessor lists with no cost because
there are no deletions in Ps. In the case of weighted
graphs it is straightforward to calculate successors given
predecessors in O(log2 n) time. Each vertex is assigned
to a PU, the expected number of predecessors per vertex
is m′

/n which is O(log n) when edges have integer
weights uniformly distributed in (0, C] : C < ∞ (O(1)
if edge weights are infinitely discretizable). Each PU
writes the corresponding successor entry in Ss for each
of its predecessors. Reducing the writes by each of the
n PUs to Ss requires O(log n) time.

Computing Path Counts: Computing path counts in G′
can be done in O(log2 n) time using n PUs. Each vertex
is assigned to a PU, in each iteration every PU checks
to see if the path count at its vertex is non-zero. If so it
increments the path count at each of its successors in G′

Unweighted Weighted

SSSP O(log n) O(log3 n
log logn)

(expected)
Compute S 0 (in SSSP) O(log2 n)

Compute σs 0 (in SSSP) O(log2 n)

Compute δ and CB O(log2 n) O(log2 n)

Total (∀s ∈ V) O(n log2 n) O(n log3 n
log logn)

Fig. 4: Expected case runtime for each phase of the presented
betweenness centrality algorithm for each of the possible
classes of edge weights

by its own path count and is finished. The diameter of the
giant component G′ is O(log n) whp [7], thus calculating
path counts requires O(log n) iterations each of which
requires O(log n) time to reduce the writes by each of
the n PUs.

Updating Dependency and Centrality: Rather than
traversing G′ from source to sink as when computing
path counts, computing dependency and centrality re-
quires traversing G′ from sink to source. The operation
is fundamentally the same however, updating the depen-
dency of the predecessors of a vertex, rather than the
path count of its successors. Care must be taken that all
successors of a vertex v have updated the dependency
of v before v in turn updates the dependencies of its
predecessors. This is easily accounted for by counting
the updates to v.

Theorem 2. Betweenness centrality on random graphs
from G(n, dn) with d ∈ O(log n) can be computed in
expected time O(n log3 n

log logn) using dn log logn
log3 n

PUs on a
CRCW PRAM. If G is unweighted this can be reduced
to O(n log n) expected time using n PUs.

C. Distributed Memory Analysis

Our analysis utilizes the well-known LogGP model [1]
as framework for formal analysis. The LogGP model
incorporates three of the four main network parameters:
L is the maximum latency between any two processes, o
is the CPU injection overhead of a single message, g is
the “gap” between two messages, i.e., the inverse of the
injection rate, G is the “gap” per byte, i.e., the inverse
bandwidth, and P is the number of processes.

Let Tp2p(s) denote the time that is needed to transmit
a message of size s between two arbitrary PUs. Fur-
thermore, let Tcoll(s) denote the time that is needed to
perform a global reduction operation where the result
of a binary function F(a, b), applied to the values on
all PUs, is returned on all PUs. This simplified network
model was used in [27] to analyze the ∆-stepping algo-
rithm on a distributed system. In the BSP [30] model, we
would simply substitute Tp2p(s) = O(l + g(s+ logP))

and Tcoll(s) = O(log p(l + gk)). In LogGP, we could
replace Tp2p(s) = 2o+L+g+(s−1)G if we assume that
messages are sent in batches (g has to be charged) and
Tcoll(s) = O(logP) · Tp2p(s) for small s, if we assume
an implementation based on point-to-point messages in
a tree pattern.

Shortest Paths Calculation: Meyer et al. showed in [27]
that for ∆-stepping on weighted random graphs, the
number of phases h = O(log2 n

log logn) whp. In our analysis,
we assume the practically most interesting case P ≤
n

h logn . Each PU stores n/P rows of the adjacency matrix
which contain whp, nd/P edges of G. Vertices have
a global identifier that can be used to determine the
owner PU of that vertex in constant time (e.g., a hash
function). It is intuitive that load balancing is already
achieved due to the properties of the random graph
G. Whenever an edge (u, v) leading to a remote PU
is relaxed, a relaxation request with the vertex and
dist(u) + w(u, v) is sent to the owner of v. If all
requests are collected, and communicated at the end of
each phase (i.e., only the shortest edge to a vertex v is
communicated), then the runtime can be estimated by
O(nd/P + h(Tcoll(1) + Tp2p(dn/Ph))).

Calculating Successors given Predecessors: This step
can simply be achieved by sending all remote edges to
the PUs that own the target vertex and by “flipping” all
edges, i.e., ∀s ∈ V do ∀v ∈ Ps[u] : add u to S[v]. Each
process has Θ(dnP−1P) remote edges evenly distributed
on P −1 peer PUs whp. Thus, the expected time for this
step is O(Tp2p(dnP−1P 2) · P + dn/P).

Computing Path Counts: For this, we use the same
distribution as in the previous step. The algorithm is
started at s and runs until all queues on all PUs are
empty. Dequeue operations act on a separate queue on
each PU and enqueue operations enqueue the vertex at
the owning PU by sending a control message. When
a PU’s queue is empty, it starts a new communication
round and waits for the other nodes in order to check if
all queues are empty. Communication complexity can be
quantified by the maximum number of communication
rounds r which is the longest path in the communication
tree (i.e., when the last node finishes the algorithm).

Lemma 4. The number of communication rounds r =
O(log n) whp.

Proof: The longest path in the subgraph G′ has as
many edges as the diameter of the giant component of
G which is O(log n) whp. Only remote edges (edges
leading to other PUs) cause message sends and can
potentially cause a new communication round. G′ is
traversed in breadth first search order, and thus, whp,
r = O(log n).

Lemma 5. The time to compute the shortest path
counts on a distributed memory parallel machine is
O(n logn/P + h(Tcoll(1) + Tp2p(n log n/Ph))).

Proof: The number of edges in G′ is bounded by
n log n whp (cf. Lemma 3). Thus, in a random graph,
the expected number of edges per process is n logn/P
and each edge is traversed once. Lemma 4 shows that
a maximum of r < h rounds are performed in the
algorithm. Each of the h phases and the r rounds
consists of a collective operation that checks if the
next round/phase can be started and the same number
of point-to-point message sends. It is easy to see that
each edge is communicated at most once during the
computation of the shortest path counts. As P → ∞,
this is also the expected communication volume.

Updating Dependency and Centrality: This computation
is similar to the computation of the shortest path counts,
with the only difference that G′ is traversed backwards.
Lemma 4 can also be applied to this traversal. Each edge
e ∈ E′ needs to be considered and the distributed queue
implementation could enforce a collective synchroniza-
tion operation during each round. Thus, the time required
to update the dependency is of the the same order as for
the path count computation in Lemma 5.

Theorem 3. Betweenness centrality on random graphs
from G(n, dn) with d = O(log n) and random edge
weights can be computed in expected time O(n

2 logn/P+
nh(Tcoll(1) + Tp2p(dn/Ph))) whp on a distributed mem-
ory parallel machine with P processors.

In unweighted graphs, where breadth first search can
be used to compute all shortest paths and the prede-
cessor set, the shortest path computation is bounded
by O(nd/P + r(Tcoll(1) + Tp2p(dn/Ph)). Computing
betweenness centrality is bounded by O(n

2 logn/P +
n log n(Tcoll(1) + Tp2p(dn/P logn)) whp.

IV. SIMULATION AND IMPLEMENTATION

In this section, we evaluate the performance and
scalability of the revised betweenness centrality algo-
rithm. All performance evaluations were performed on
the Indiana University Computer Science Department’s
“Odin” research cluster. Odin consists of 128 InfiniBand-
connected compute nodes with 4 GiB memory each.
We used a single process per node in our tests. We
implemented our algorithm in the Parallel Boost Graph
Library (PBGL) [18] and built it against Boost 1.42.0 [8]
(containing the sequential BGL) in our tests.

Calculating betweenness centrality requires solving
the SSSP problem starting at each vertex. For graphs
with tens of millions of vertices or larger, solving n
SSSPs is infeasible. We instead solve the SSSPs for a
randomly chosen subset of vertices in V . In practice this

Unweighted [s] Weighted [s] (C = 106)
d = 4 8.35 11.21
d = 8 13.56 15.39
d = 12 16.82 16.85
d = 30 23.35 22.72

Table I: Performance of the sequential BGL implementation
of Betweenness Centrality [9] (n = 220, time is per-source
vertex).

approach generates a reasonably good approximation of
the centrality scores for several real-world networks [3].
We assume in this case that one instance of the full graph
needs all available memory.

Although our focus lies on the parallel performance
of Algorithm 2, we present the performance of Brandes’
sequential algorithm in order to provide a baseline.
Table I demonstrates the performance of the sequential
algorithm as implemented in BGL. Due to the additional
overhead imposed by the distributed data structures and
communication code needed to support parallel compu-
tation, the parallel implementation is noticeably slower
on a single processor. Differences in runtime between the
weighted and unweighted version illustrate the tradeoff
between the lower complexity of the SSSP algorithm in
the unweighted case vs. smaller m′ in the weighted case
which reduces the complexity of subsequent stages of
the algorithm. All single processor numbers beyond this
table are the results of running the parallel algorithm
with the required parallel data structures on a single
processor.

The ∆ parameter to the ∆-stepping algorithm deter-
mines the width of each bucket in the data structure used
to sort edges by weight. This parameter determines the
amount of work available to be performed in parallel
at each step, and consequently how work-inefficient the
algorithm is. We have set ∆ to maximum edge weight

maximum vertex degree
for all results presented. It is likely that further tuning of
the ∆ parameter would lead to additional performance
improvement.

A. Strong Scaling

To understand how well Algorithm 2 scales as more
computational resources are provided, we evaluated the
performance on fixed-size graphs.

Figures 5(a) and 5(b) illustrate the strong scalability
(scaling with a fixed-size input) of Algorithm 2. Once
the communication overhead is subsumed, the algorithm
scales well until insufficient work is available to benefit
from the additional resources. This occurs around 64
to 96 processors and depends both on the number of
edges and number of equal weight paths. It is clear that
the parallel implementation exhibits significant overhead
due to parallel data structures and communication, in
most cases, the parallel algorithm is not faster than

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 2 4 8 16 32 64

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
o
n

d
s
)

of Processors

avg. degree = 4
avg. degree = 8

avg. degree = 12

(a) Unweighted Strong (n = 220)

 5

 10

 15

 20

 25

 30

 35

 1 2 4 8 16 32 64

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
o
n

d
s
)

of Processors

avg. degree = 4
avg. degree = 8

avg. degree = 12

(b) Weighted Strong (C = 106, n = 220)

 0

 50

 100

 150

 200

 250

 1 2 4 8 16 32 64

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
o
n

d
s
)

of Processors

avg. degree = 4
avg. degree = 8

avg. degree = 12

(c) Unweighted Weak (n = 219)

Fig. 5: Scaling of Algorithm 2 applied to Erdős-Rényi graphs (time is per source vertex).

the sequential version until 16 processors or more are
available. Due to the generic programming techniques
employed in the Parallel BGL most of the distributed
data structures exhibit no overhead in the P = 1 case.
One source of overhead that cannot be avoided is the
determination of ownership of elements of the graph.
In order to locate vertices and edges in the graph and
their associated properties a processor performs either a
computation or a lookup in an array that maps vertices
to PUs. In the P = 1 case this lookup always returns
the index of the only existing processor, but cannot be
eliminated by the compiler. When the amount of work
per vertex is small this ownership determination can have
a large effect on the runtime of the algorithm.

B. Weak Scaling

To understand how the parallel implementation of
Algorithm 2 scales as the problem size scales, we
evaluated the performance of each algorithm on graphs
where n ∝ m ∝ P . Weak scalability is perhaps the most
appropriate test of Algorithm 2 because it illustrates the
algorithm’s ability to compute betweenness centrality on
graphs which the sequential implementation is unable to
process due to memory constraints per node. Figures 5(c)
and 6(a) show that the runtime increases even though
the amount of data per processor remains constant.
This is because the time complexity of Algorithm 2
is O(n log3 n

log logn). As we vary n linearly with the number
of processors the amount of work increases faster than
the number of processors. This yields more work per
processor which gives rise to the sub-linear speedup
exhibited.

C. Scale-Free Graphs

We also evaluated the performance of Algorithm 2 on
scale-free graphs which are representative of real-world
networks. We used the Recursive MATrix (R-MAT) [10]
random graph generation algorithm to generate input
data sampled from a Kronecker product.

Figure 6(b) shows that Algorithm 2 scales relatively
well in the unweighted case, though adding more than 16

processors does not decrease the runtime. This leveling
off of performance occurs earlier with R-MAT graphs
than with Erdős-Rényi graphs, possibly due to the
smaller diameter of the graph.

Figure 6(c) shows that Algorithm 2 is able to compute
betweenness centrality on R-MAT graphs too large to
fit in the memory of a single machine. As with Erdős-
Rényi graphs the amount of work increases faster than
the number of processes leading to sub-linear scaling.
The smaller diameter of the R-MAT graphs means
that the maximum size of the ∆-stepping bucket data
structure is greater than with Erdős-Rényi graphs, which
can lead to paging and thus reduced performance at
large processor counts (this is particularly evident in the
avg. degree = 12 plot in Figure 6(c)).

Performance results on weighted R-MAT graphs were
omitted due to space constraints.

V. CONCLUSIONS AND FUTURE WORK

We have presented a new parallel algorithm for
betweenness centrality that has expected time in a
CRCW PRAM equal to the sequential algorithm by
Brandes. Rather than parallelizing betweenness central-
ity by solving multiple single source shortest paths
problems at once, we have exposed parallelism within
the shortest paths computation by leveraging existing
label-correcting single-source shortest path algorithms.
This method allows us to demonstrate good parallel
performance while maintaining low space complexity.

This algorithm has lower time complexity on sparse
graphs than solutions which utilize all-pairs shortest
path algorithms such as Floyd-Warshall. In addition
this algorithm has low space complexity relative to all-
pairs shortest paths algorithms which makes it especially
suitable the analysis of very large graphs on distributed
memory machines.

We have presented results on Erdős-Rényi and R-
MAT random graphs which demonstrate that our al-
gorithm is both computationally efficient and scalable.
Greater speedup could be achieved by leveraging fine-
grained parallelism at the node level. Hybrid approaches

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1 2 4 8 16 32 64

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
o
n

d
s
)

of Processors

avg. degree = 4
avg. degree = 8

avg. degree = 12

(a) Weighted ER Weak (C = 106, n = 219)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 1 2 4 8 16 32 64

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
o
n

d
s
)

of Processors

avg. degree = 4
avg. degree = 8

avg. degree = 12

(b) Unweighted RMAT Strong (n = 222)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1 2 4 8 16 32 64

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
o
n

d
s
)

of Processors

avg. degree = 4
avg. degree = 8

avg. degree = 12

(c) Unweighted RMAT Weak (n = 219)

Fig. 6: Scaling of Algorithm 2 applied to Erdős-Rényi (ER) and RMAT graphs (time is per source vertex).

leverage fine-grained parallelism to maximize use of
local resources and coarse-grained parallelism to allow
problem scaling and provide additional performance
benefits. Hybrid approaches will become increasingly
important given increasing problem size and the growing
processing capability of individual machines. We are
currently developing a new version of the Parallel BGL
which leverages hybrid parallelism and reduces overhead
in the communication layer and anticipate presenting
new performance results in the near future.

Acknowledgements

This work was supported by a grant from the Lilly En-
dowment. The authors would also like to thank Jeremiah
Willcock for useful discussions regarding proofs.

REFERENCES
[1] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman.

LogGP: Incorporating Long Messages into the LogP Model.
Journal of Par. and Distrib. Computing, 44(1):71–79, 1995.

[2] J. Anthonisse. The rush in a directed graph. Technical Report
BN9/71, Stichting Mathematisch Centrum, Amsterdam, 1971.

[3] D. Bader, S. Kintali, K. Madduri, and M. Mihail. Approximating
betweenness centrality. In Alg. and Models for the Web-Graph,
volume 4863 of LNCS, pages 124–137. Springer-Verlag, 2007.

[4] D. A. Bader and K. Madduri. Parallel algorithms for evaluating
centrality indices in real-world networks. In International
Conference on Parallel Processing, pages 539–550, 2006.

[5] R. Bellman. On a routing problem. Quarterly of Applied
Mathematics, 16(1):87–90, 1958.

[6] V. D. Blondel, J.-L. Guillaume, J. M. Hendrickx, and R. M.
Jungers. Distance distribution in random graphs and application
to network exploration. Physical Review E, 76(066101), 2007.

[7] B. Bollobas. Random Graphs. Cambridge University Press, 2001.
[8] Boost. Boost C++ Libraries. http://www.boost.org/.
[9] U. Brandes. A faster algorithm for betweenness centrality.

Journal of Mathematical Sociology, 25(2):163–177, 2001.
[10] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT: A recursive

model for graph mining. In Proceedings of 4th International
Conference on Data Mining, pages 442–446, April 2004.

[11] T. Cormen, C. Leiserson, and R. Rivest. Introduction to
Algorithms. McGraw-Hill, 1990.

[12] A. Crauser, K. Mehlhorn, U. Meyer, and P. Sanders. A paral-
lelization of Dijkstra’s shortest path algorithm. In Mathematical
Foundations of Computer Science, volume 1450 of LNCS, pages
722–731. Springer, 1998.

[13] E. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1:269–271, 1959.

[14] N. Edmonds, A. Breuer, D. Gregor, and A. Lumsdaine. Single-
source shortest paths with the Parallel Boost Graph Library. In

The Ninth DIMACS Implementation Challenge: The Shortest Path
Problem, Piscataway, NJ, November 2006.

[15] R. W. Floyd. Algorithm 97: Shortest path. Commun. ACM,
5(6):345, 1962.

[16] L. C. Freeman. A set of measures of centrality based on
betweenness. Sociometry, 40(1):35–41, March 1977.

[17] A. Frieze and G. Grimmett. The shortest-path problem for graphs
with random arc-lengths. Discrete Applied Mathematics, 10:57–
77, 1985.

[18] D. Gregor, N. Edmonds, A. Breuer, P. Gottschling, B. Bar-
rett, and A. Lumsdaine. The Parallel Boost Graph Library.
http://www.osl.iu.edu/research/pbgl, 2005.

[19] R. Hassin and E. Zemel. On shortest paths in graphs with random
weights. Mathematics of Operations Research, 10(4):557–564,
November 1985.

[20] J. JáJá. An Introduction to Parallel Algorithms. Addison-Wesley
Professional, 1992.

[21] J. Jenq and S. Sahni. All pairs shortest paths on a hypercube
multiprocessor. In Proceedings of the International Conference
on Parallel Processing, pages 713–716, 1987.

[22] D. B. Johnson. Efficient algorithms for shortest paths in sparse
networks. Journal of the ACM, 24(1):1–13, 1977.

[23] V. Kumar and V. Singh. Scalability of parallel algorithms for the
all-pairs shortest path problem. In International Conference on
Parallel Processing, pages 124–138, 1991.

[24] K. Madduri, D. Bader, J. Berry, and J. Crobak. An experimental
study of a parallel shortest path algorithm for solving large-scale
graph instances. In Workshop on Algorithm Engineering and
Experiments (ALENEX), New Orleans, LA, January 2007.

[25] K. Madduri, D. Ediger, K. Jiang, D. Bader, and D. Chavarria-
Miranda. A faster parallel algorithm and efficient multithreaded
implementations for evaluating betweenness centrality on mas-
sive datasets. In Multithreaded Architectures and Applications
(MTAAP 2009). IEEE Computer Society, May 2009.

[26] U. Meyer. Design and analysis of sequential and parallel
single-source shortest-paths algorithms. PhD thesis, Universität
Saarbrücken, 2002.

[27] U. Meyer and P. Sanders. ∆-stepping: A parallelizable shortest
path algorithm. J. Algorithms, 49(1):114–152, 2003.

[28] G. L. Miller and J. H. Reif. Parallel tree contraction and its
application. In Proceedings of the 26th Annual Symposium on
Foundations of Computer Science, pages 478–489, Washington,
DC, USA, 1985. IEEE.

[29] G. Sabidussi. The centrality index of a graph. Psychometrika,
31(4):581–603, December 1966.

[30] L. G. Valiant. A bridging model for parallel computation.
Commun. ACM, 33(8):103–111, 1990.

[31] S. Warshall. A theorem on boolean matrices. J. ACM, 9(1):11–
12, 1962.

[32] Q. Yang and S. Lonardi. A parallel algorithm for clustering
protein-protein interaction networks. In Computational Systems
Bioinformatics Conference – Workshops, pages 174–177, Wash-
ington, DC, USA, 2005. IEEE Computer Society.

