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Abstract—Efficient deadlock-free routing strategies are cru-
cial to the performance of large-scale computing systems. There
are many methods but it remains a challenge to achieve lowest
latency and highest bandwidth for irregular or unstructured
high-performance networks. We investigate a novel routing
strategy based on the single-source-shortest-path routing al-
gorithm and extend it to use virtual channels to guarantee
deadlock-freedom. We show that this algorithm achieves min-
imal latency and high bandwidth with only a low number
of virtual channels and can be implemented in practice. We
demonstrate that the problem of finding the minimal number
of virtual channels needed to route a general network deadlock-
free is NP-complete and we propose different heuristics to solve
the problem. We implement all proposed algorithms in the
Open Subnet Manager of InfiniBand and compare the number
of needed virtual channels and the bandwidths of multiple
real and artificial network topologies which are established
in practice. Our approach allows to use the existing virtual
channels more effectively to guarantee deadlock-freedom and
increase the effective bandwidth of up to a factor of two.
Application benchmarks show an improvement of up to 95%.
Our routing scheme is not limited to InfiniBand but can
be deployed on existing InfiniBand installations to increase
network performance transparently without modifications to
the user applications.

Keywords-acyclic path partitioning; deadlock-free; Infini-
Band; NP-complete; routing; virtual channels

I. INTRODUCTION

The number of network endpoints in supercomputer net-

works is growing steadily. It ranges from mid-range systems

with 500–1000 endpoints over high-class systems such as

Sandia’s Thunderbird cluster with ≈ 4400 endpoints or the

Ranger system at the Texas Advanced Computing Center

with ≈ 4000 endpoints to top-class systems such as Oak

Ridge’s Jaguar (XT-5) system with ≈ 19000 endpoints or

the soon-to-be installed Blue Waters system with ≈ 10000
endpoints. Hundreds of thousands of endpoints are consid-

ered in the design of Exascale systems [1].

It is important to exploit the performance of such large-

scale networks efficiently. The main metrics to evaluate a

network installation are point-to-point bandwidth, latency,

and bisection bandwidth. However, these metrics deliver

only an idealized specification (an upper bound) of the

network performance without inclusion of the routing al-

gorithm or the application communication pattern. In reg-

ular operation these values can hardly be achieved due

to network congestion. The largest gap between real and

idealized performance is often in bisection bandwidth which

by its definition only considers the topology. The effective

bisection bandwidth [2] is the average bandwidth for routing

messages between random perfect matchings of endpoints

(also known as permutation routing) through the network

and thus considers the routing algorithm.

Routing algorithms can contain cycles in the buffer depen-

dency graph, which might lead to global network deadlocks

or generally unstable operation. It is thus most important

to avoid such cycles. Several methods have been developed

to guarantee deadlock-freedom, for example the controller

principle [3] to manage the flows. This defines an algorithm

on each node, which can permit or forbid the generation,

the transfer and the consumption of packages. Another

method is used by the Up*/Down* routing [4], which simply

avoids cycles in the buffer dependency graph by limiting

the number of possible paths during the routing process.

Both methods restrict the number of possible paths through

the network and might thus limit the effective bisection

bandwidth. Another concept, which avoids such limitations,

is the splitting of a physical channel into a set of virtual

channels [5], whereby the routing can avoid a cyclic channel

dependency graph through assigning paths or subpaths to

different virtual channels.

A. Related Work

Deadlock-free routing strategies exist for torus topolo-

gies [5], [6] and fat-tree/Clos networks [7]. However, those

schemes only guarantee high bandwidth and deadlock-

freedom in case of highly structured networks. It is common

practice to have special endpoints in such topologies (e.g.,

login nodes and file-system servers are often connected with

redundant links to minimize the impact of network failures).

Thus, only three of our six investigated real-world systems

are pure fat-tree or torus topologies. It is also common

that supercomputers are extended later and topologies grow

with the machines. The properties of specialized routing



algorithms do not hold on such irregular network topologies,

and deadlocks or a low effective bisection bandwidth occur

in practice.

Optimal oblivious routing for general networks have been

proposed but either require the solution of NP-hard prob-

lems [8] or employ linear programming techniques that are

too time-consuming for large-scale systems [9], [10]. Several

practically feasible algorithms have been implemented in

the Open Subnet Manager of InfiniBand (OpenSM) [11].

OpenSM offers MinHop routing, which might generate

cycles, the cycle-free Up*/Down* routing [12], DOR and its

cycle-free variant LASH [13]. Recently, SSSP routing, a new

routing algorithm that delivers higher bandwidth, has been

proposed [14]. However, it is not deadlock-free on common

topologies as torus.

Several approaches exist to resolve deadlocks by breaking

the cycles with virtual channels in existing routing algo-

rithms [13], [15].

In our work, we combine the fast SSSP algorithm with

approaches to avoid deadlocks in general networks. We

systematically study routing time, effective bisection band-

width, and the influence on application performance on

large-scale networks. The major contributions of our work

are:

• We present a formal definition of the virtual channel

assignment problem and a proof that finding of the

minimum number of virtual channels to guarantee

deadlock-freedom in general networks is NP-complete.

• We propose a high-bandwidth deadlock-free routing

algorithm for arbitrary topologies and a heuristic to

utilize all available virtual channels to maximize per-

formance [16].

• We present an open-source implementation of our rout-

ing algorithm and of the virtual channel assignment,

and compare effective bisection bandwidth, routing

time and application performance for several artificial

and real networks.

Several different network technologies are used to im-

plement large systems: Gigabit Ethernet, InfiniBand and

proprietary interconnects are widely used in modern HPC

systems. Without loss of generality and due to its wide

availability (41.4% of the systems in the current Top 500

list are connected with InfiniBand), we chose the InfiniBand

network for our experiments and implementation. Our tech-

niques can be used for other networks, for example Ethernet

(VLAN tags can be used as virtual channels [17]) or IBM’s

PERCS network [18]. InfiniBand supports arbitrary network

topologies and up to 16 virtual channels (called virtual lanes;

we remark that currently available hardware only supports

up to eight virtual lanes).

The paper is structured as follows: Section II presents the

single-source-shortest-path routing algorithm and its benefits

and issues. We define the acyclic path partitioning problem,

which models the deadlock-prevention approach using vir-

tual channels, in Section III. Section IV shows the extension

of the SSSP routing algorithm to a deadlock-free routing

(DFSSSP). In Section V we discuss the improvements of

the DFSSSP routing for real-world and artificial topologies

regarding the simulated effective bisection bandwidth and

compare the virtual channel requirement. The last Section VI

studies the performance of the DFSSSP routing on the basis

of the effective bisection bandwidth and benchmarks on an

existing HPC system.

II. SINGLE-SOURCE-SHORTEST-PATH ROUTING

Single-source-shortest-path (SSSP) routing was intro-

duced in [14]. SSSP routing globally balances the number of

routes per link along all shortest paths between source and

destination pairs to optimize link utilization. The network

is modeled as a directed multigraph G(V,E) in which V

represents the set of network nodes and E represents the

set of physical connections between the nodes. Balancing is

done by iterative application of a single-source shortest-path

algorithm, e.g., Dijkstra’s algorithm [19], and by increasing

all edge weights along routed paths in each iteration. The

total routing algorithm, see Algorithm 1, iterates over all

nodes in the graph to find the shortest paths from one source

to all other nodes. The reverse path is used to generate the

forwarding tables, called ft in Algorithm 1, for all nodes in

order to transfer packets to the source.

The balancing of the bandwidth is reached through a

weight for each edge, which will be updated in each iteration

according to the following rule: Each edge weight ωe for e

will be incremented by one for all edges of the path from v

to source. This will be done for all nodes v ∈ V \ {source}.
Obviously, the order of the sources defines the routes and

initializing the edge weights to one can cause non-minimal

path lengths. As an example for the non-minimal path

lengths, we show in Figure 1 the state of the graph after

all routes to v1 have been determined. Starting a new search

at v2 leads to a detour over node v6. To force minimal paths

(and thus minimal latency) we need another initialization.

An appropriate initial edge weight would be |V |2, because

a detour to avoid edge e with weight |V |2 + ωi
e needs at

least two edges e′ and e′′. Here ωi
e means the additional

weight after the i. iteration, and ωi
e < |V |

2 through the fact

that only |V | · (|V |−1) paths are observed. From this it fol-

Figure 1. Updated weights after first iteration with source v1



Algorithm 1 SSSP Routing

Input: Graph(V,E)

Output: Forwarding Tables

for all nodes w ∈ V do

source← w

/* search shortest path from source to all targets */

for all v ∈ V do

initialize v (v.distance←∞, v.parent← ∅)
end for

source.distance← 0
Q← V

while Q 6= ∅ do
search u ∈ Q with u.distance ≤ v′.distance ∀ v′ ∈ Q

Q← Q \ {u}
for all (u, v) = e ∈ E with v ∈ Q do

if u.distance + ωe < v.distance then

v.distance← u.distance + ωe

v.parent← e

end if

end for

end while

/* update edge weights */

for all e ∈ E do

count paths with e ∈ path(v, source) ∀ v ∈ V

ωe ← ωe +#paths

end for

/* update forwarding tables */

for all v ∈ V do

if v.parent 6= ∅ then
v.ft[source]← v.parent

end if

end for

end for

lows that |V |2 + ωi
e < (|V |2 + ωi

e′) + (|V |2 + ωi
e′′). So our

shortest-path algorithm never chooses a detour. A detailed

explanation of the algorithm can be found in [14].

The SSSP routing algorithm supports arbitrary network

topologies and network technologies with either source

routing or distributed routing. However, as discussed in [14],

SSSP routing might introduce cyclic dependencies between

network buffers which might lead to network deadlocks. We

will discuss such deadlock situations and possible solutions

in the following section.

III. DEADLOCKS IN GENERAL NETWORKS

A deadlock situation can occur in a system if the following

four conditions are met [20]:

1) Tasks have exclusive access to the resources;

2) A task does not release resources while waiting for

additional resources;

3) Only the task, which holds a resource, can release this

resource;

4) A circular dependency in which each task requests a

resource held by another task in this cycle.

These conditions are sufficient for a deadlock, iff there exists

only one resource. For multiple resources of the same type

the conditions 1) – 4) are only necessary for a deadlock in

a network.

Now, we show that the SSSP algorithm might lead to

network deadlocks due to limited buffering in the switching

elements. Considering, for example, a ring topology, see

Figure 2, with five nodes and at most one bi-directional

link between two nodes, and assuming a communication

pattern in which each node sends messages to a node that is

two hops away in clockwise direction, the above-mentioned

SSSP routing strategy would route all messages in clockwise

direction. Each message needs buffer space at the next hop

to be forwarded. With the described configuration, all buffers

could fill up and no message would be able to progress. This

circular buffer dependency can thus lead to a deadlocked

configuration.

Figure 2. Ring topology that leads to deadlocked configuration with SSSP
routing

Dally and Seitz defined a method for deadlock-free obliv-

ious routing based on virtual channels [5]. They model an

interconnection network I := G(N,C) as a directed graph

that consists of the node set N of processing nodes and

the edge set C of communication channels in the network.

The routing function R : C × N → C assigns for each

channel-destination pair (ci, nd) the next channel ci+1 in the

path. So the path of a message through the network is only

defined by the current channel and its destination. These two

definitions will be used to define the channel dependency

graph whereby one can specify whether a routing function

R is deadlock-free or not. The channel dependency graph

D := G(C,E) is a directed graph with the edge set of I as

nodes. The edges e := (ci, cj) of D are defined by the rout-

ing function R through e ∈ E ⇐⇒ ∃n ∈ N : R(ci, n) = cj .

Theorem 1 in [5] states that a routing function is deadlock-

free iff the corresponding channel dependency graph is

acyclic. Cycles in the dependency graph can now be broken

by assigning parts of the paths to different virtual channels

(separate buffers). Lysne et al. define a similar method which

uses virtual channels to define virtual layers and assign paths

from source to destination to one layer so that each layer is

deadlock-free [13].



For the sake of completeness, we note that the ”iff” state-

ment in Dally’s Theorem 1 is not fully correct. Schwiebert

presents a counterexample in [21]. Under certain conditions

a channel dependency graph can have a cycle but the

network with a defined routing function, which induced the

cycle, can never reach a deadlock state. This is called an

unreachable configuration. From this it follows that a cycle-

free channel dependency graph is only a sufficient condition

for a deadlock-free routing, but is no longer necessary. We

use this sufficient condition in Section IV to extend the

SSSP routing to a deadlock-free single-source-shortest-path

routing function.

A. The Acyclic Path Partitioning Problem

Each virtual channel occupies physical resources (buffer

space) in all switches. Thus, the number of such channels

is often limited by a small constant, e.g., the InfiniBand

specification defines a maximum number of sixteen, but

all current implementations only support eight virtual lanes.

Thus, the very important question, how many virtual layers

are needed for a given network and routing function to avoid

deadlocks, needs to be discussed.

To answer this question, we have to make some defini-

tions: For a given network I and routing function R the

corresponding channel dependency graph D = G(C,E) is

the same, as defined above. The route of a message from

source to destination characterizes a path p := c0c1 . . . cn,

ci 6= cj for i 6= j, in D. Additionally, the node and edge set

of a path is defined through

nodes(p) := { c ∈ C | ∃ ci ∈ p : c = ci }

edges(p) := { e ∈ E | ∃ ci, ci+1 ∈ p : e = (ci, ci+1) }

A set P of paths is a generator of D, if the conditions

VP :=
⋃

p∈P

nodes(p) and EP :=
⋃

p∈P

edges(p)

hold for the induced graph D ∼= G[P ] := (VP , EP ). A

partition P := {P1, . . . , Pk | ∀ i = 1, . . . , k : Pi ⊆ P } of

the generator P is called cover iff

i. Pi 6= ∅ for all i = 1, . . . , k
ii. P =

⋃k

i=1
Pi

iii. ∀ i, j = 1, . . . , k, i 6= j : Pi ∩ Pj = ∅ and

iv. the generated graph G[Pi] is acyclic for all

i = 1, . . . , k.

These definitions will be used to postulate the following

decision problem

Instance: Given is the generator P and a positive

integer k < |P |.
Question: Is there a partition P = {P1, . . . , Pk} of

P so that P is a cover?

which we call the acyclic path partitioning problem or

APP problem. We show an example of this problem in

Figure 3. It shows a generator P = {p1, p2, p3}, with

p1 = bc, p2 = abc and p3 = cdab on the left, and the

possible cover P =
{
P1 = {p1, pp2}, P2 = {p3}

}
on the

right side.

generator: associated cover:

Figure 3. Example for P = {p1, p2, p3} and k = 2

Next, we will show that no efficient algorithm is known

to solve the APP problem.

Theorem 1. The acyclic path partitioning problem is NP-

complete.

Proof: A decision problem Π is NP-complete [22] iff

i. Π ∈ NP and

ii. Π is NP-hard.

The proof of i. is trivial, because a non-deterministic algo-

rithm can guess a truth assignment g : P → N for each path

pi ∈ P , so that pi is part of one subset Pj . The algorithm

can validate the partitioning in polynomial time as follows:

It searches in each generated graph G[Pj ], for all 1 ≤ j ≤ k,

for cycles via a depth-first search. Deduced from the time

complexity O(|V |+ |E|) for the DFS on a graph G(V,E)
follows the polynomial time for the validation. The proof of

ii. is more complicated. A problem Π is NP-hard iff

∀Π′ ∈ NP : Π′ ≤p Π

which means for each problem in NP there is a polynomial

transformation into the problem Π. With the assistance of

Lemma 2.1 and Lemma 2.2 [22] it is sufficient to show

a polynomial transformation from one arbitrary problem

Π′ ∈ NP into the problem Π. For sake of completeness

a function f is called polynomial transformation iff

(a) the computation of f can be done in polynomial time

with a deterministic Turing machine and

(b) for all instances x of Π′ with x ∈ Π′ ⇐⇒ f(x) ∈ Π.

Now a polynomial transformation from the graph k-col-

orability problem (GT4 [22]) for the graph G(V,E) into

the APP problem will be constructed. For k ≥ 3 GT4 is

NP-complete. First the set of adjacent nodes adj(v) :=
{w1, . . . , wm | ∀ 1 ≤ i ≤ m : wi ∈ V ∧ (v, wi) ∈ E }
is defined to construct the paths in P . For each node v ∈ V



two set will be defined

Vv := {〈v〉} ∪
{
〈v, {v, w}〉 | w ∈ adj(v)

}

∪
{
〈w, {v, w}〉 | w ∈ adj(v)

}

Ev :=
{
(〈v〉, 〈v, {v, w1}〉)

}

∪
{
(〈v, {v, wi}〉, 〈wi, {v, wi}〉) |

wi ∈ adj(v) ∀ 1 ≤ i ≤ m
}

∪
{
(〈wi, {v, wi}〉, 〈v, {v, wi+1}〉) |

wi, wi+1 ∈ adj(v) ∀ 1 ≤ i < m
}

where the set Ev consists of directed edges. From this it

follows that for all v ∈ V the graph G(Vv, Ev) =: pv only

consists of an acyclic directed path with

• pv = 〈v〉 ⇐⇒ adj(v) = ∅
• pv = 〈v〉〈v, {v, w1}〉〈w1, {v, w1}〉 . . . 〈v, {v, wm}〉
⇐⇒ |adj(v)| = m

Hence, the generator P can be constructed from V and E

in polynomial time by defining

P := { pv | v ∈ V }

whereby (a) has been proved. Based on the definitions above,

two proposition can be made

(1) Let (v, w) ∈ E =⇒ the graph

G[{pv, pw}] = G(Vv∪Vw , Ev∪Ew) is cyclic, because

pv = 〈v〉 . . . 〈v, {v, w}〉〈w, {v, w}〉 . . .

pw = 〈w〉 . . . 〈w, {w, v}〉〈v, {w, v}〉 . . .

create the cycle 〈v, {v, w}〉〈w, {v, w}
︸ ︷︷ ︸

={w,v}

〉〈v, {w, v}
︸ ︷︷ ︸

={v,w}

〉.

(2) Let V ′ ⊆ V be an independent set =⇒
⋃

v∈V ′ G(Vv , Ev) =: GV ′ is acyclic. This follows

from ∀ v, w ∈ V ′ : Vv ∩ Vw = ∅ =⇒ no edge exists

between pv und pw =⇒ GV ′ consists of disjoint

acyclic paths.

Finally, a proof is needed which verifies that the construction

of the generator P is a polynomial transformation. Referring

to (b) first the proof for ”⇒”: Let {V1, . . . , Vk} be the graph

k-coloring of G(V,E) where each node in Vi has the color i
def.
=⇒ the sets Vi are each independent sets

(2)
=⇒ {P1, . . . , Pk}

is a k-cover, whereby Pi := { pv | v ∈ Vi } for 1 ≤ i ≤ k.

For the opposite direction ”⇐”: Let {P1, . . . , Pk} be a

k-cover
def.
=⇒ G[Pi] is acyclic for all 1 ≤ i ≤ k

(1)
=⇒

for any two v, w ∈ V , with pv, pw ∈ Pi, there is no edge

(v, w) in E =⇒ the sets Vi, which are the base for Pi, are

independent sets =⇒ {V1, . . . , Vk} is a k-coloring.

In the following section, we present an efficient heuristic

for the acyclic path partitioning that minimizes the number

of virtual layers in deadlock-free SSSP routing.

IV. DEADLOCK-FREE SSSP ROUTING

Our first approach is similar to Layered Shortest Path

Routing (LASH) [13]. It starts with the generation of the

shortest path between each source-destination pair in the

network (see Algorithm 1). After this step, the online algo-

rithm searches a layer for each path, so that adding path x

to layer y does not close a cycle in the channel dependency

graph of layer y. This results in one cycle search per path,

at the minimum. This approach is very time-consuming and

thus not scalable to large networks. The depth-first search

on the channel dependency graph D = G(C,E) has a

complexity of O(|C|+ |E|). The channel dependency graph

grows successively when the paths are added. For a network

I = G(N,C) there are |N |2 paths, so the minimum time

complexity for the online algorithm is O(|N |2 ·(|C|+ |E|)).
This is impractical for large-scale networks.

Our second approach first creates all paths and then breaks

cycles in the complete graph D in an offline-manner (see

Algorithm 2). The initial channel dependency graph contains

all paths and possibly cycles. Then, a cycle search is started

for this layer, which aborts when a cycle is found and returns

the cycle. The algorithm cuts the cycle by taking one edge

of the cycle and moving all paths, which induce this edge,

to the next layer. Next, the cycle search is resumed on the

same place, where the search aborted initially. This is done

until no cycles remain in the first layer. Relocated paths can

create new cycles in the channel dependency graph of the

next layer. Hence, all layers have to be processed in the same

manner until each channel dependency graph is acyclic.

The advantage of the offline algorithm is, that exactly one

complete cycle search for each channel dependency graph

is needed. This reduces the duration enormously, especially

for large network configurations, but at the cost of a higher

memory complexity. For example, a synthetic network with

4096 nodes was processed in approx. 170 seconds by the

offline algorithm instead of nearly two hours with the

online method, while the additional memory requirement of

the offline algorithm was 340 MByte. The higher memory

complexity results from the storage of all paths which induce

an edge in the channel dependency graph. Thus, an attribute

of each edge is an one-dimensional list of source-destination

pairs, whose path induces the edge. This list is needed by

the offline algorithm to identify the paths which have to be

moved to the next layer to break a cycle. Let d(I) be the

graph diameter of the network I . So the longest path consists

of d(I)−1 sequential channels. From this it follows that the

memory complexity of one channel dependency graph with

|N |2 paths is O(d(I) · |N |2 + x) for the offline algorithm,

where O(x) = O(|C| + |E|) is the memory complexity of

the same channel dependency graph for the online algorithm.

The highest additional memory requirement of 540 MByte,

we measured in our simulations, was for the Ranger cluster,

which was mentioned in the introduction.



Algorithm 2 Search and Remove Deadlocks

Input: Graph(V,E), Forwarding Tables

Output: Path to Virtual Layer Assignment

/* initialize first channel dependency graph */

for all nodes u, v ∈ V do

update cdg[1] with path(u, v)
assign the virtual layer for this path u.ft[v].vl← 1

end for

/* search for cycles in the channel dependency graphs */

for i = 1 to #{virtual layers} − 1 do

repeat

search for a cycle in cdg[i]
identify weakest edge of the cycle

for all path(u, v) induces the weakest edge do

remove path(u, v) from cdg[i]
update cdg[i+ 1] with path(u, v)
u.ft[v].vl← i+ 1

end for

until no cycle found in cdg[i]
end for

search for a cycle in cdg[#{virtual layers}]
if cycle found then

no deadlock-free assignment possible

end if

/* balance paths on empty CDGs without additional

cycle search */

c← #{non-empty CDGs}
for i = 1 to c do

calculate a set S of empty virtual layers for cdg[i]
for all j ∈ S do

/* move paths from cdg[i] to cdg[j] */

end for

end for

We summarize our findings in two propositions. First, we

look at the parts of Algorithm 1 and 2 step by step. Dijkstra’s

algorithm has a time complexity of O(|N | · log |N | + |C|)
using a binary or Fibonacci heap to search the node with

smallest distance and a memory complexity of O(|N |+|C|).
The time complexity to create a channel dependency graph

is O(|N |2) while it needs O(|C| + |E|) memory. The

cycle search, as indicated ahead, has a time complexity of

O(|C| + |E|). Additionally, we define the minimum number

of virtual layers

∇ := min{ k ∈ N | ∃ k-cover for I and R }

for the following propositions.

Proposition 1. The time complexity of the online DFSSSP

algorithm is

O( |N |2 · (∇ · (|C|+ |E|) + log |N |+ 1) + |N | · |C| )

while its memory complexity is

O(∇ · (|C| + |E|) + |N | )

Proposition 2. The time complexity of the offline DFSSSP

algorithm is

O( |N |2 · (log |N |+∇) + |N | · |C|+∇ · (|C|+ |E|) )

while its memory complexity is

O(∇ · d(I) · |N |2 +∇ · (|C|+ |E|) + |N | )

The last question which remains is, which edge of the

cycle we have to break to minimize the number of virtual

channels needed for a deadlock-free routing. With reference

to Section III-A, no efficient algorithm is known to minimize

the number of virtual channels. We implemented the simple

heuristic to remove the weakest edge in the cycle. This

means to remove the edge induced by the least number of

paths to minimize the number of paths in the next virtual

channel. The second heuristic does the opposite. It removes

the edge induced by the largest number of paths to break

currently undiscovered cycles induced by the same paths.

Additionally, we tested a pseudo-random heuristic which

removes all paths of the first discovered edge of a cycle.

Several other heuristics are known to optimize NP-

complete problems like APP, e.g., random optimization,

genetic algorithms, simulated annealing or threshold accept-

ing. However, the application of those methods suffers from

two problems: The first one is the absence of a weighting

function for the APP problem. Only two possible states

are known: deadlocked configuration and deadlock-freedom.

Hence, heuristics like simulated annealing cannot be adapted

to the APP problem. The next problem is the time com-

plexity, algorithms like random optimization would cause

more validation steps (i.e., time-consuming cycle searches),

whether the partitioning is deadlock-free or not.

Simulations with random topologies, consisting of 64

switches, 1024 endpoints, and 128 links to connect the

switches, revealed that the best of our heuristics is to break

the weakest edge of the cycle. Depending on the random

topology, the needed number of virtual channels ranges from

3 to 5 for this heuristic, whereas the range for the pseudo-

random heuristic is 4 to 8. The third was the worst heuristic

with a range from 4 to 16.

V. SIMULATED BANDWIDTH AND VIRTUAL CHANNELS

To evaluate the quality of the developed routing meth-

ods, we used the Oblivious Routing Congestion Simulator

(ORCS, [23]). The simulator calculates the effective bisec-

tion bandwidth from an given arbitrary network topology

and routing. ORCS reads a directed graph representation of

the network, which also includes the routing information.

It generates a user-defined number of random bisection

patterns, whereby one endpoint in subset A has exactly one

associate endpoint in subset B (random perfect matching).



Thus, the simulator assumes one communication process

per node. ORCS simulates a point-to-point communication

among all pairs and counts the congestion to evaluate the

relative effective bisection bandwidth of the network.

We compared our proposed routing algorithms with the

routing algorithms supplied by the InfiniBand Subnet Man-

ager, MinHop, Up*/Down*, FatTree, LASH and Dimension

Order Routing, for six real-world HPC systems. The real-

world examples are the 550-node CHiC at Chemnitz Uni-

versity of Technology, the 3288-node system JUROPA/HPC-

FF at Forschungszentrum Jülich, the 128-node system Odin

operated by Indiana University and the Ranger HPC system,

which consists of 3936 nodes at Texas Advanced Computing

Center. Additionally, we have the graph representations of

a 1430-node configuration of the Tsubame HPC system at

Tokyo Institute of Technology and the 724-node Deimos

cluster, which is described in detail in Section VI. All

systems use an InfiniBand interconnect. The results are

displayed in Figure 4, a missing bar indicates that the

selected routing algorithm failed. SSSP and DFSSSP routing

has a significantly higher effective bisection bandwidth than

the other algorithms. The only exception is the Odin cluster,

which is a pure fat tree with only one 144-port switch.

Besides the 4.75% regression in the simulated effective

bisections bandwidth for Odin, the distance between the

DFSSSP routing and second best algorithm are in the range

of 1.4% for JUROPA to 63.27% improvement for Ranger.
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Figure 4. Simulated bandwidth for real-world HPC systems; 1000 random
bisection pattern

On the other hand, we investigated some artificial network

topologies commonly used for HPC systems. Figure 5 shows

the results for extended generalized fat trees (XGFT) [24].

On one side, the bandwidth of the LASH and DOR routing is

decreasing steadily. On the other side, the effective bisection

bandwidth of the routing algorithms MinHop, Up*/Down*

and DF-/SSSP is relatively constant for one height h of the

tree. For the height h = 2 of the tree, i.e., starting from
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Figure 5. Simulated bandwidth for a XGFT network; 1000 random
bisection pattern
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Figure 6. ORCS: effective bisection bandwidth simulations for a Kautz
network; 1000 random bisection patterns

512 endpoints, there is a small increase in bandwidth of

DF-/SSSP compared to the MinHop routing. One special

case is the configuration with 1024 endpoints. The effective

bisection bandwidth of the DF-/SSSP routing is approx.

twice as high as the value of MinHop. From these facts

it follows that the load balancing, and in this way the con-

gestion minimization, of our developed routing algorithms

is superior for those topologies.

Another investigated topology are networks designed as

Kautz graphs [25], whereby the switches build the Kautz

graph and endpoints are connected to them. The advantage

of Kautz graphs is the minimal graph diameter ensuring

short paths in the network. As it is shown in Figure 6,

all investigated routing algorithms provide similar effective

bisection bandwidths for this type of topology. Each in-

crease in bandwidth, during an increment in the number of

endpoints, is associated with an increase in the number of

links connecting the switches. These connection links are



proportional to the parameter b, see Table I. In contrast to

Figure 5, LASH provides nearly the same bandwidth as the

deadlock-free version of the SSSP routing.

Additionally to the bandwidth simulations, we measured

the runtime for each routing algorithm on a common work-

station. An example of these measurements is shown in

Figure 7 and we can deduce that our offline DFSSSP

algorithm has ≈ 10x higher runtime with respect to the

MinHop algorithm. The topology for this measurement is

a k-ary n-tree [26]. This fact holds for the real-world HPC

systems, too, as one can see in Figure 8.
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Figure 7. Runtime comparison for k-ary n-tree topologies
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Figure 8. Runtime comparison for real-world HPC systems

The parameters to create the different network sizes

(number of endpoints) for the XGFT, Kautz and k-ary n-tree

topology are presented in the following Table I. We assumed

the use of 36-port switches.

A. Needed Number of Virtual Layers

Furthermore, we investigated the number of virtual layers

needed for a deadlock-free routing. The reference value

Switch Topologies

#Endpoints XGFT(h; m; w) Kautz(b, n) k-ary n-tree

64 XGFT(1; 6; 3) Kautz(2, 2) 6-ary 2-tree

128 XGFT(1; 10; 5) Kautz(2, 2) 10-ary 2-tree

256 XGFT(1; 16; 8) Kautz(2, 3) 16-ary 2-tree

512 XGFT(2; 6,6; 3,3) Kautz(3, 3) 6-ary 3-tree

1024 XGFT(2; 10,10; 5,5) Kautz(3, 3) 10-ary 3-tree

2048 XGFT(2; 14,14; 7,7) Kautz(4, 3) 14-ary 3-tree

4096 XGFT(2; 18,18; 9,9) Kautz(6, 3) 18-ary 3-tree

Table I
PARAMETER TO GENERATE THE NETWORKS

for this measurement will be the LASH algorithm. It is

important to achieve a small number of virtual channels,

because they might be bounded as described in Section I.

With respect to [15], we first measured the number of virtual

layers for random topologies. In Figure 9, we present the

minimum, maximum and average number of virtual layers

needed for a random topology. We use a network with 128

32-port switches, each connected to 16 endpoints, random

connections between the switches, and we vary the number

of such connections. For each number of connections, 100

random topologies are generated and the number of needed

virtual layers for the LASH and DFSSSP routing are com-

puted by applying the routing algorithm. The analysis shows,

that the average number of virtual layers for LASH is smaller

for a larger number of connection links (a denser network),
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Figure 9. Number of needed virtual layers for a deadlock-free routing of
random topologies



but the DFSSSP routing performs better for a lower number

of connection links (a sparser network). The intersection

point for the average number is at about 200 connections.

The more relevant question is, how many virtual layers are

needed to route real-world HPC systems? Figure 10 shows

the required number of virtual layers for each topology.

DFSSSP routing performs better on these topologies. How-

ever, due to the NP-complete decision problem, it remains

unclear whether the LASH routing algorithm or the DFSSSP

algorithm performs better in general.
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Figure 10. Virtual layers needed for real-world HPC systems

VI. EXPERIMENTAL RESULTS

To validate our simulated results we implemented the

SSSP routing and the DFSSSP routing as part of the In-

finiBand Subnet Manager and used a real-world cluster to

measure the performance benefits based on synthetic and ap-

plication benchmarks. The cluster, named Deimos, consists

of 724 nodes with 2576 cores and is operated by the Center

for Information Services and High Performance Computing

at Technische Universität Dresden. The interconnect network

of Deimos is composed of three 288-port fat-tree switches,

connected with 30 links, see Figure 11. The remaining ports

of the switches are used to connect the endpoints, which are

equipped with PCIe 1.1 HCAs to deliver a theoretical peak

bandwidth of 946 MiB/s for a point-to-point connection.

30 30

288 fat tree 288 fat tree 288 fat tree

258 228 258

Figure 11. Deimos network topology

The reference for our measurements will be the MinHop

routing algorithm, which is part of the InfiniBand Subnet

Manager and delivers the second-highest bandwidths [14]

besides the SSSP/DFSSSP algorithm but is not deadlock-

free. Additionally, the figures will contain the results of the

LASH routing algorithm, because it uses the same approach

to be deadlock-free but we remark that LASH was designed

for torus topologies and we do not expect high bandwidths

on Deimos’ topology. All measurements on Deimos were

done in the same way. For the number of cores up to 512,

we used one core per node. For the measurements with 1024

cores the MPI processes were spread across 250 nodes using

a mixture of dual-, quad- and octa-core nodes. We used the

same nodes (allocation) for identical number of cores so that

the only difference was the routing we used.

A. Measured Bandwidths and Microbenchmarks

Netgauge [27] is a network measurement tool which

supports benchmarking of many different network protocols

and communication patterns. One part of Netgauge is the

determination of the effective bisection bandwidth. This

benchmark partitions the processes into two equal sets, A

and B. Each process of set A communicates with exactly one

process of set B. Several random partitions are investigated

to measure the average bandwidth. We used this tool to

verify the simulated results of Section V for Deimos. After

the synchronization step all pairs of processes perform a

ping-pong communication of 1 MiB for 50 iterations. We

set the number of random partitionings to 1000 to get an

adequate approximation of the effective bisection bandwidth.

Figure 12 shows the results of our measurements. Thereby,

the improvement of our deadlock-free routing algorithm

grows from 27% for 128 cores over 47% to a doubling of the

bandwidth for 512 cores. But the absolute effective bisection

bandwidth decreases for all routing algorithms because of

an increase of the congestion in the interconnect network

of Deimos. The absolute gap between the MinHop and

DFSSSP routing corresponds to 69.7 MiB/s – 79.3 MiB/s per

pair for the first three steps.
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Figure 12. Netgauge: effective bisection bandwidth measurements

In addition to the Netgauge benchmark we used some

communication microbenchmarks of BenchIT [28]. BenchIT

is a measuring environment to provide a set of parallel and

non-parallel kernels for a wide range of problems. It is able

to manage the measurements and can display and compare



the results. It was developed to compare architectures by

using fixed microbenchmarks or to compare different imple-

mentations of the same algorithm, e.g., all loop permutations

for a matrix×matrix multiplication algorithm.

First, as a reference measurement, we measured the

point-to-point bandwidth of a synchronous send. The kernel

operates as follows: Rank 0 of the MPI processes sends a

fixed number of bytes to all other processes and measures

the minimal, maximal and average bandwidth. We ran this

microbenchmark on 128 cores, one core per node, and the

results were as expected, all routing algorithms delivered

the same bandwidths due to the absence of congestions

and shortest path routing. For this measument, with mes-

sage sizes up to 2.5 MiB, all routings achieved an average

bandwidth of 844.65 MiB/s at the largest message size. To

investigate congested situations, we ran a microbenchmark

that measures the runtime of collective communications. The

result is shown in Figure 13. The kernel iterates over the

number of floats in the send buffer and measures the time for

the MPI all-to-all operation. For the largest number of 4096

floats the processes transfer accumulated 254 MiB. As one

can see, and as the Netgauge benchmarks has indicated, the

DFSSSP routing algorithm balances the network traffic and

reduces the congestions better than the MinHop algorithm.

So our routing algorithm leads to a processing time of

10.06 ms instead of 18.88 ms in the case of 4096 floats in

the send buffers, which corresponds to a speedup of 46.7%.
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B. Application Benchmarks

For the application benchmarks we used the original MPI-

based NAS Parallel Benchmarks suite [29] version 2.4. It

provides, apart from an embarrassingly parallel benchmark

and an integer sort kernel, six parallel benchmarks. We will

mainly concentrate on the results of the benchmarks BT,
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Figure 14. BT solves a system of equations as used in CFD codes
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Figure 15. SP solves a system of equations as used in CFD codes

FT and SP and present the improvements of the DFSSSP

routing in tabular form for 1024 cores, see Table II.

Both the BT and SP benchmark solve a system of

equations whereby, in the first case, the matrix has a block

tridiagonal structure and in the second case a scalar pentadi-

agonal structure, so the solvers have a different computation-

to-communication ratio. The nearest-neighbor communica-

tion in these codes is done over non-blocking point-to-point

communications and, additionally, a small amount of all-

reduce operations are processed. As one can see in Figure 14

and Figure 15 the MinHop routing algorithm performs as

well as our DFSSSP algorithm for the smaller number

of cores, 121 and 256. The small number of cores and

nearest-neighbor communication does not cause to much

congestion in the interconnect network. For 484 cores the

performance values of the BT benchmark diverge, but both

routing algorithms lead to a positive scaling of the code.

Whereas the SP code has a drop in the performance for this

number of cores for the MinHop routing. But the DFSSSP



routing induces a performance gain and the communication

overhead will be crucial for 1024 cores, for the first time.

The FT kernel solves a 3-dimensional partial differential

equation applying fast Fourier transformations. The differ-

ence in communication, with respect to the BT and SP

kernel, is that the FT benchmark uses MPI collective op-

erations, mainly all-to-all communication and some reduce

operations. So when communication is performed, it in-

volves all processes at the same time and our measurements

should show an improvement of the DFSSSP routing even

for smaller numbers of cores. We validate these assumptions

in our measurements, shown in Figure 16. Even for 128 and

256 cores the DFSSSP routing delivers an improvement of

≈ 25% for the Gflop/s rate.
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Figure 16. FT solves a 3D FFT partial differential equation

Gflop/s (total)

Benchmarks MinHop DFSSSP Improvement in %

BT 108.82 212.27 95.07

CG 5.81 8.75 50.60

FT 60.16 114.87 90.94

LU 129.26 247.46 91.44

MG 164.84 215.51 30.74

SP 43.21 68.71 59.01

Table II
NAS PARALLEL BENCHMARKS FOR 1024 CORES ON DEIMOS

The kernels CG, LU and MG showed similar perfor-

mance characteristics and thus are omitted. Table II shows

the performance improvements for all measured application

benchmarks for 1024 cores which are in the range of 30%
to 95%.

VII. SUMMARY AND CONCLUSION

We demonstrated that the SSSP routing algorithm can be

affected by network deadlocks. It is possible to use virtual

channels (layers) to break cycles in the channel dependency

graph, however, optimal assignment of virtual channels to

routes is unclear. We formally defined the acyclic path

partitioning (APP) problem which models the cycle-free

assignment of routes to virtual layers. We proved that the

APP problem is NP-complete. We proposed three different

heuristics to solve the problem out of which one, breaking

the weakest edge of the cycle, is the most suitable for a

practical implementation. Our implementation of DFSSSP

(deadlock-free SSSP) in OpenSM uses this heuristic to cre-

ate a deadlock-free routing for arbitrary network topologies.

We demonstrated that DFSSSP routing enables higher

bandwidth than comparable algorithms (e.g., MinHop which

is not deadlock-free) and uses less virtual layers than LASH

on existing cluster systems. We also investigated DFSSSP

on a 724-node cluster system and benchmarked a doubling

in effective bisection bandwidth and an improvement for

application performance of up to 95%.

Our implementation is ready to be used in InfiniBand

production environments and improves network performance

transparently. A patched version of the OpenSM is avail-

able at http://unixer.de/research/dfsssp/.

Although our implementation is InfiniBand-specific, the

algorithms apply to generic networks.
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[11] A. Bermúdez, R. Casado, F. J. Quiles, T. M. Pinkston, and
J. Duato, “Evaluation of a subnet management mechanism
for infiniband networks,” in 32nd International Conference
on Parallel Processing (ICPP 2003), 6-9 October 2003,
Kaohsiung, Taiwan. IEEE Computer Society, 2003, p. 117.

[12] M. D. Schroeder, A. Birell, M. Burrows, H. Murray, R. Need-
ham, T. Rodeheffer, E. Satterthwaite, and C. Thacker, “Au-
tonet: A high-speed, self-configuring local area network using
point-to-point links,” IEEE Journal on Selected Areas in
Communications, vol. 9, no. 8, Oct. 1991.

[13] O. Lysne, T. Skeie, S.-A. Reinemo, and I. Theiss, “Layered
routing in irregular networks,” IEEE Trans. Parallel Distrib.
Syst., vol. 17, no. 1, pp. 51–65, 2006.

[14] T. Hoefler, T. Schneider, and A. Lumsdaine, “Optimized
routing for large-scale infiniband networks,” in HOTI ’09:
Proceedings of the 2009 17th IEEE Symposium on High
Performance Interconnects. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 103–111.

[15] T. Skeie, O. Lysne, J. Flich, P. Lopez, A. Robles, and J. Duato,
“Lash-tor: A generic transition-oriented routing algorithm,”
in ICPADS ’04: Proceedings of the Parallel and Distributed
Systems, Tenth International Conference. Washington, DC,
USA: IEEE Computer Society, 2004, p. 595.

[16] J. C. Sancho, J. Flich, A. Robles, P. L. López, and J. Duato,
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S. Pflüger, H. Röding, S. Seidl, T. William, and R. Wloch”,
“Benchit – performance measurement and comparison for sci-
entific applications,” in Parallel Computing - Software Tech-
nology, Algorithms, Architectures and Applications, ser. Ad-
vances in Parallel Computing, F. P. G.R. Joubert, W.E. Nagel
and W. Walter, Eds. North-Holland, 2004, vol. 13, pp. 501–
508.

[29] D. Bailey, T. Harris, W. Saphir, R. V. D. Wijngaart, A. Woo,
and M. Yarrow, “The nas parallel benchmarks 2.0,” NASA
Ames Research Center, Tech. Rep. NAS-95-020, Dec. 1995.


