
HEAR: Homomorphically Encrypted Allreduce
Marcin Chrapek

Department of Computer Science

ETH Zurich

Zurich, Switzerland

marcin.chrapek@inf.ethz.ch

Mikhail Khalilov

Department of Computer Science

ETH Zurich

Zurich, Switzerland

mikhail.khalilov@inf.ethz.ch

Torsten Hoefler

Department of Computer Science

ETH Zurich

Zurich, Switzerland

torsten.hoefler@inf.ethz.ch

ABSTRACT
Allreduce is one of the most commonly used collective operations.

Its latency and bandwidth can be improved by offloading the cal-

culations to the network. However, no way exists to conduct such

offloading securely; in state-of-the-art solutions, the data is passed

unprotected into the network. Security is a significant concern

for High-Performance Computing applications, but achieving it

while maintaining performance remains challenging. We present

HEAR, the first high-performance system for securing in-network

compute and Allreduce operations based on homomorphic encryp-

tion. HEAR implements carefully designed and modified encryption

schemes for the most common Allreduce functions and leverages

communication domain knowledge in MPI programs to obtain de-

cryption and encryption routines with high performance. HEAR

operates on integers and floats with no code base and no or lit-

tle hardware changes. We design and evaluate HEAR, showing its

minimal overhead, and open-source our implementation. HEAR

represents the first step towards achieving confidential HPC.

CCS CONCEPTS
• Networks→ In-network processing; • Security and privacy
→ Distributed systems security; • Computer systems organi-
zation→ Distributed architectures.

KEYWORDS
Message Passing Interface, Allreduce, In-Network Computing, Ho-

momorphic Encryption, Confidential Computing

ACM Reference Format:
Marcin Chrapek, Mikhail Khalilov, and Torsten Hoefler. 2023. HEAR:

Homomorphically Encrypted Allreduce. In The International Conference
for High Performance Computing, Networking, Storage and Analysis (SC ’23),
November 12–17, 2023, Denver, CO, USA. ACM, New York, NY, USA, 14 pages.

https://doi.org/10.1145/3581784.3607099

1 INTRODUCTION
Allreduce is the most used [21, 62, 76, 10] message-passing interface

(MPI) collective in which 𝑃 processes belonging to a communicator

S aggregate a vector of data element-wise and return the aggregated

values to each process. Summation, product, and max/min operators

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SC ’23, November 12–17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0109-2/23/11. . . $15.00

https://doi.org/10.1145/3581784.3607099

Figure 1: A simplified overview of HEAR running within a
secure environment with an untrusted network. HEAR con-
ducts homomorphically encrypted Allreduce by shifting the
values on a ring, ensuring losslessness and enabling perfor-
mant decryption through spatial knowledge of the program.

are typical examples of aggregation functions [64]. Many applica-

tions, such as scientific workloads [21, 44, 89], deep learning [88,

20, 8], graph processing [100, 51], and big data analytics [100, 101],

rely on Allreduce. Recent studies show that Allreduce, together

with the related Reduce collective, are the most commonly invoked

collectives taking over 30-40% of the total collective operation time

in core hours [21, 76] and making “MPI_Allreduce [...] the most
significant collective in terms of usage and time”.

To increase the performance and lower the amount of transmit-

ted data of Allreduce, the processes can exploit in-network com-

puting (INC). INC allows hosts to offload the Allreduce function

to the networking devices such as switches [45, 60, 84] or network

interface cards (NICs) [86, 50]. INC provides two critical advantages:

latency and bandwidth usage reductions. The former is lowered by

3-18x [45, 60] which results in performance gains of 1.5-5.5x [60,

84]. The latter can be reduced by 2x [27], resulting in a lower net-

work contention and system power savings as modern datacenter

interconnects constitute 15-50% of the overall power usage [2].

However, INC is insecure, and currently, no method exists for

securing it. As the information required for computations is used

unencrypted, the state-of-the-art sends the INC data unprotected

https://orcid.org/0009-0009-7654-6038
https://orcid.org/0000-0003-0862-4662
https://orcid.org/0000-0002-1333-9797
https://doi.org/10.1145/3581784.3607099
https://doi.org/10.1145/3581784.3607099
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3581784.3607099&domain=pdf&date_stamp=2023-11-11

SC ’23, November 12–17, 2023, Denver, CO, USA Marcin Chrapek, Mikhail Khalilov, and Torsten Hoefler

in the network [45], making INC vulnerable to attacks. This raises

an issue as an increasing number of users, companies, and govern-

ments emphasize data anonymity and confidentiality [73, 40, 96].

The growing importance of security led to confidential computing

(CC) gaining attention.

CC refers to methods to protect sensitive data while being pro-

cessed [67, 77]. One of the crucial elements of CC is homomorphic

encryption (HE). HE allows conducting arithmetic operations on

the encryptedmessages without needing to decrypt them first [3, 98,

70]. HE has been identified to have significant potential in applica-

tions such as medical records [68, 97], biometric data [29], financial

data [68], advertising [68], and AI [7, 91]. While HE provides strong

security guarantees, most existing schemes are impractical because

of the increased size of the encrypted message (ciphertext) over the

original message (plaintext) or the low performance [3].

Performance overheads usually make HE impractical for HPC

use cases such as securing INC. While security is an essential fea-

ture of HPC, enabling it to achieve its anticipated benefits [47], HPC

has unique security requirements unlike those in typical IT systems.

One of the most crucial differentiators is the trade-off between per-

formance and security, where the users consider security valuable

only if it does not slow down calculations significantly [47]. Such

requirements made confidential HPC (cHPC) restrictive.

We present HEAR, a first step towards achieving cHPC. HEAR

is a novel system for securing INC and Allreduce operations based

on homomorphic encryption. HEAR implements carefully selected

and modified encryption schemes for the most common Allreduce

functions. It leverages the knowledge of the communication do-

main in the MPI programs to obtain decryption and encryption

routines with high performance and low to no ciphertext overhead,

thus fulfilling the HPC security requirements. HEAR operates on

integers and floats with no or minimal hardware changes. Figure

1 displays a simplified overview of HEAR while conducting an

intuitive version of the integer Allreduce summation. Each MPI

rank encrypts the data by adding on a ring a pseudorandom key

deterministically generated from initialization keys known by all

ranks. The scheme provides homomorphic addition properties, and

because of modulo arithmetic, no information is lost. The resulting

aggregated value can be efficiently decrypted by subtracting the

sum of all the keys. As the performance plots show, HEAR achieves

around 80% of the native network throughput and introduces low

latency overheads, considering the provided security benefits. In

summary, our contributions are:

(1) Defining a suitable INC and cHPC threatmodel alongsideHEAR,

a novel framework for confidential Allreduce operations allow-

ing users to choose between performance and security. Ho-

momorphically based HEAR works on integers and floats and

supports addition, multiplication, and XOR.
(2) Defining and discussing the security of a new floating point

HE scheme suitable for HPC usage. Presenting the analysis of

the precision loss against the gained security for the floating

points within the scheme.

(3) Designing, implementing, and evaluating HEAR, the first high-

performance Allreduce framework based on MPI stack and

datatype, allowing for confidential INC.

(4) Open-sourcing HEAR
1
as a library for use with any MPI stan-

dard implementation without changing the code base and re-

compiling applications.

2 BACKGROUND
Security attacker models: Attacker models play a crucial role

in evaluating the security of cryptographic schemes. One widely

used attacker model is the indistinguishability under the chosen-

plaintext attack (IND-CPA) model, which assesses a scheme’s re-

silience to attacks where an adversary can choose plaintext mes-

sages to encrypt and observe the corresponding ciphertexts [58].

IND-CPA is equivalent to semantic security, where only negligible

information can be extracted about the plaintext from the cipher-

text [41]. Another important attacker model is the ciphertext-only

attack (COA) [11], which evaluates a scheme’s resistance to attacks

where an adversary can only access ciphertexts. Attacker models

are essential in providing a rigorous evaluation of the security of

cryptographic systems. Their use in proofs offers a high level of

confidence in the effectiveness of a given cryptographic scheme.

Secure environments: The ability to evaluate programs in a

secure environment is a crucial element of CC. Secure environ-

ments can be achieved by, for example, using Trusted Execution

Environments (TEEs) [102]. TEEs are isolated, secure execution en-

vironments that protect sensitive data and code from being accessed

or tampered with by unauthorized parties outside the TEE [81].

TEEs such as Intel SGX [25], AMD SNP-SEV [57] or ARM Trust-

Zone [74] are based on hardware security mechanisms that create

secure and isolated regions within the system’s memory. While

TEEs provide security of the data on the host, their communication

is not well defined [103]. Existing solutions [93] do not support

INC and would require increasing the threat boundary. To the best

of our knowledge, no prior research allows data from a secure

environment to be combined with INC.

CombiningMPI, INC, and secure environments:Usually, the
communication between MPI processes is either unencrypted [5,

93, 79] or encrypted using end-to-end (E2E) techniques such as

TLS [80]. However, turning the encryption off for some applica-

tions is unacceptable, and E2E encryption prevents the users from

leveraging INC. For TEEs, turning off encryption makes little sense

as it would expose the protected data. Relaying the encryption and

decryption to the network devices increases the threat boundary

and requires either key sharing or attestation. For key sharing to

work with INC, keys would need to be shared with all the network-

ing devices as the ones involved in the computation are not known

a priori, especially for dynamically routed networks. Additionally,

this would introduce decryption and encryption latencies on the

involved networking devices. On the other hand, attesting and

opening TEEs on all network devices introduces further overhead

in TEE context switching. Each context switch requires flushing

of translation lookaside buffers or last-level caches [25], making

achieving the line rate and low latencies challenging.

The current unencrypted INC schemes have two main issues

that should be solved: data confidentiality and result authentica-

tion. In the former case, the INC devices can read unprotected

data and obtain potentially confidential information. In the latter

1
https://github.com/spcl/libhear

https://github.com/spcl/libhear

HEAR: Homomorphically Encrypted Allreduce SC ’23, November 12–17, 2023, Denver, CO, USA

PHE SWHE FHE

[78] [42] [33] [9] [72] [23] [85] [14] [83] [12] [55] [19] [13] [34] [17] HEAR

R1

R2

R3

R4

Table 1: Comparison of the available encryption schemes
with different requirements. R1: At most 2x ciphertext infla-
tion, R2: A large number of operations, R3: Low operation
complexity, R4: Allow for many operation types. signifies
not fulfilling, partially fulfilling, entirely fulfilling.

case, the network devices can manipulate the data freely without

the MPI program realizing it. In our work, we primarily focus on

confidentiality. We also discuss the authentication in Section 5.5.

Homomorphic encryption (HE): HE allows conducting arith-

metic operations on encrypted messages. Encryption scheme with

encryption 𝐸 and message space 𝑀 is homomorphic for an oper-

ation ★ if it fulfills 𝐸 (𝑥1) ★ 𝐸 (𝑥2) = 𝐸 (𝑥1 ★ 𝑥2) ∀𝑥1, 𝑥2 ∈ 𝑀 . We

categorize HE into three categories: partially, somehow, and fully

homomorphic schemes [3]. Partially HE (PHE) allows a single op-

eration type on encrypted data, e.g., addition or multiplication.

Somewhat HE (SWHE) can evaluate multiple operation types but

only a limited number of times. Fully HE (FHE) allows for arbitrary

operations and unlimited evaluations. The choice between different

schemes depends on the application requirements.

3 DESIGN REQUIREMENTS
The requirements of confidential HPC are radically different from

those of typical HE applications, making most HE schemes im-

practical due to the increased size of the ciphertext over plaintext

(ciphertext inflation), a limited number of operations, and high com-

putation intensities of encryption, decryption, and homomorphic

operations. HEAR cannot use an off-the-shelf encryption scheme

because such overheads are unacceptable in a distributed HPC envi-

ronment. HEAR required a design of its own HE methods inspired

by some existing frameworks [85, 14]. We present a comparison

of HEAR and evaluate common encryption schemes to show their

shortcomings. We summarize this analysis in Table 1.

R1: At most 2x ciphertext inflation. INC provides bandwidth

reduction of up to 2x [27]. As the sent message is encrypted, the

cryptographic schemes should have ciphertext inflation as low as

possible and not larger than 2x. Otherwise, one of the main ad-

vantages of INC would be eliminated. Most HE schemes do not

fulfill this condition. FHE schemes are notorious for large inflation,

reaching 10,000x for bit-sized inputs with some keys reaching gi-

gabytes [3, 23]. Newer FHE schemes have considerably reduced

the inflation [19, 18], which, as the size of the message grows to

infinity, can reach 2x still eliminating the INC advantages. Concep-

tually simpler and more efficient PHE schemes also rarely achieve

this goal. Paillier [72], RSA [78] or ElGamal [33] obtain at least

2x. Unmodified additive ring-based schemes also do not offer a

solution here due to increasing key arrays [85]. HEAR bases its

operation on additive ring schemes and cleverly uses the evaluated

program’s structure and communication to eliminate ciphertext

inflation for integers. For floats, HEAR provides the designers with

a parameter that controls the trade-off between inflation, security,

and the achieved precision.

R2: A large number of operations. Many HE schemes suffer

from a limited number of operations that they can perform, after

which the result is not guaranteed to be decrypted appropriately.

For example, SWHE schemes usually increase noise after each

iteration [3]. Bootstrapping [39] is the technique commonly used

in FHE schemes to deal with this problem. It requires periodic

refreshing of the ciphertext to reduce the aggregated noise, which

is typically slow and requires large keys [3]. Additionally, some

HE schemes that support a limited number of operations have a

variable ciphertext length [23]. The length depends on the limit

of the number of operations leading to more complex hardware.

HEAR offers an unlimited number of operations and a constant

ciphertext size for integers and floats.

R3: Low operation complexity.Many HE schemes are com-

plex. The encryption, decryption, and operation times are typically

slow and in the range of milliseconds to hours [3]. FHE encryp-

tion schemes can take minutes to conduct simple 16-bit additions,

not due to the complexity of the conducted operations but due to

their ciphertext inflation [23]. Even if we operate in the limit where

ciphertext inflation does not matter, encryption and decryption

remain complex operations [17]. PHE schemes suffer from more

complex functions involving, for example, large modulus opera-

tions [78, 33, 72]. HEAR is defined by basic arithmetic and uses MPI

communication structure to allow for performant operation.

R4: Allow for many operation types. SWHE schemes allow

a subset of operations while FHE schemes all of them [3]. Some

PHE frameworks offer multiple schemes based on principles readily

convertible to different operations [85, 23]. HEAR follows a similar

strategy and implements six schemes to enable various operations.

4 THREAT MODEL
We assume three parties operating within the same network; a set S
of 𝑃 processes together with HEAR running within secure environ-

ments that established a communication domain, the cluster user

who legitimately submits a program and its data to be evaluated,

and an adversary who has modify access to the data input methods

and can observe the whole network. Due to the number of avail-

able options [102], we do not limit ourselves to a particular type of

secure environment. We leave it to the user to decide their level of

trust, e.g., whether they would like to run a TEE on the whole or

parts of the program or simply trust the nodes. We assume that the

secure environment prohibits the adversary from accessing the con-

fidential parts of the program and HEAR’s keys and methods. The

adversary tries to obtain confidential information by eavesdropping

on the network transmissions that leave the secure environment.

Any elements within the network, such as the NICs and routers, are

untrusted. The adversary can observe the network and influence

the data provided to the securely running program. An example of

an adversary would be a malicious sysadmin. Figure 2 presents an

overview of the threat model with the trusted elements in a green

outline and untrusted ones in a red outline.

To differentiate between the security levels HEAR provides

against such an adversary, we introduce three types of safety: tem-

poral, local, and global. We assume processes submit a vector of

values to HEAR, and we consider the plaintext to be any element

within a provided Allreduce vector on any of the processes. We

SC ’23, November 12–17, 2023, Denver, CO, USA Marcin Chrapek, Mikhail Khalilov, and Torsten Hoefler

Figure 2: The threat model of HEAR with the processes run-
ning within secure environments, untrusted network, and
overview of the provided safety.
marked the various plaintexts with 𝑥𝑖 𝑗 in Figure 2. In such an

environment, with a high probability, temporal safety ensures a

given plaintext value during consecutive Allreduce operations is

encrypted differently. Local safety ensures plaintexts in a process-

local vector are encrypted differently during the same Allreduce

operation. Global safety ensures plaintexts across different pro-

cesses are encrypted differently. Figure 2 displays what we mean

by local and global safety, showing sets of values that should not

get encrypted to the same ciphertext.

HEAR always provides local and temporal security. We define

two attacker types to distinguish between situations with and with-

out global safety:

(1) Single-process attacker : can submit message data to one

process. In practice, this could be a process to which the op-

erator has obtained access through, for example, expensive

side-channel attacks.

(2) Multi-process attacker : can submit message data on all 𝑃

processes. In practice, this could happen at the end of program

evaluation, where the sysadmin pretends that the communica-

tion has ended. At the same time, they overtake the communi-

cation domain and continue submissions to obtain information

from the previously logged messages.

Both are stronger versions of passive attackers just observing the

network. We primarily consider confidentiality attacks on the mes-

sage contents. We discuss integrity protection in Section 5.5.

5 HEAR DESIGN
HEAR optimizes the performance and scalability of supported data

and operation types while minimizing the need to change existing

INC hardware. HEAR is built on symmetric primitives, allowing for

homomorphic operations in the network with consecutive indepen-

dent ciphertexts, yielding ground for performant parallelization.

All the schemes used in HEAR can be intuitively summarized as:

𝐸 (𝑥) = 𝑥 ★ noise 𝐷 (𝑥) = 𝑥 ★ noise
−1

For an encryption function 𝐸, decryption function 𝐷 , plaintext

𝑥 , operation★, and a noise derived from keys providing security. In

Sections 5.1-5.3, we define these parameters for distinct data and

operation types, reflecting the underlying value encoding differ-

ences. Each scheme includes definitions of encryption/decryption,

and an overview of performance, security, and lossiness. Table 2

displays the supported operations and their main properties. Table 3

provides intuition behind the presented math.

Key Generation: HEAR is initialized by generating keys within

processes belonging to a given communicator. The initialization is

per communicator, even if some processes are already initialized

in a different communicator. In this phase, each of the 𝑃 processes

with rank 𝑖 involved in a communicator S generates a local starting
random key 𝑘𝑠

𝑖
∈ Z𝑛 . 𝑘𝑠𝑖 is kept secret and is securely shared with

selected other processes. Each rank 𝑖 stores its key, and the keys of

rank 𝑖−1 and 0. Those keys are necessary for better performance, as

discussed in Section 5.1.4. Rank 0 also generates a single collective

random key 𝑘𝑐 ∈ Z𝑛 together with the encryption 𝑘𝑒 ∈ Z𝑚 and

progression 𝑘𝑝 ∈ Z𝑚 keys. The three values are kept secret and

broadcasted securely to all the other processes. Additionally, we

let a pseudorandom function (PRF) 𝐹 : {0, 1}𝑛 × {0, 1}𝑚 → Z𝑑 be a

trapdoor function defined as 𝐹𝑘 (𝑥) = 𝐹 (𝑘, 𝑥) and mapping values

of length 𝑛 with key of length𝑚 to elements in Z𝑑 . 𝐹 needs to be a

cryptographically secure PRF such as AES [31].

After the initialization phase, each process has six keys pro-

viding performant scaling as Θ(1) in space. 𝑑 , 𝑚 and 𝑛 are user

selectable parameters. The output length 𝑑 is dictated by the size

of the datatype operated on; integers and floats have different en-

cryption requirements resulting in different output lengths. The

required application security and the used PRF dictate the key size

𝑚. The input value 𝑛 is usually defined by the used PRF.

HEAR relies on the communication structure of Allreduce
to achieve high performance. During any call to conduct an

Allreduce, the processes within the communicator increase the

collective random number as 𝑘𝑐 ← 𝐹𝑘𝑝 (𝑘𝑐). These updates are nec-
essary to provide temporal safety. Then each rank 𝑖 encrypts each

element 𝑗 of the vector of values 𝑥𝑖 to a ciphertext 𝑐𝑖 [𝑗] = 𝐸 (𝑥𝑖 [𝑗])
using one of the schemes defined in Sections 5.1-5.3 dependent on

the data and operation types. After an aggregation using an opera-

tion ⊙, each of the ranks obtains 𝑐 [𝑗] =
⊙

𝑖∈S 𝑐𝑖 [𝑗] which can be

decrypted using a function 𝐷S (𝑐 [𝑗]) =
⊙

𝑖∈S 𝑥𝑖 [𝑗]. In HEAR, the

local safety is guaranteed by using different 𝑗 to encrypt different

elements of a vector, while the global safety is provided by the

different local starting keys 𝑘𝑠
𝑖
.

5.1 Integer operations
We define integer-based schemes that do not require hardware

changes, are lossless, and have no ciphertext inflation.

5.1.1 Addition. We define addition on an abelian additive groupZ𝑑
with order 𝑑 > 1 dictated by the datatype length. For example, for

64-bit integers, PRF 𝐹 would return 64-bit pseudorandom numbers.

Subtraction can be implemented using two’s complement.

Encryption: We encrypt values as:

𝑐𝑖 [𝑗] =
{
𝑥𝑖 [𝑗] + 𝐹𝑘𝑒 (𝑘𝑠𝑖 + 𝑘𝑐 + 𝑗) 𝑖 = 𝑃 − 1
𝑥𝑖 [𝑗] + 𝐹𝑘𝑒 (𝑘𝑠𝑖 + 𝑘𝑐 + 𝑗) − 𝐹𝑘𝑒 (𝑘

𝑠
𝑖+1 + 𝑘𝑐 + 𝑗) otherwise

(1)

Decryption: We decrypt as DS (𝑐 [𝑗]) = 𝑐 [𝑗] − 𝐹𝑘𝑒 (𝑘𝑠0 + 𝑘𝑐 + 𝑗).
Losslessness: Using a well-known modulo arithmetic prop-

erty (𝑎1 + 𝑎2) mod 2
𝑏 = (𝑎1 mod 2

𝑏 + 𝑎2 mod 2
𝑏) mod 2

𝑏
we

HEAR: Homomorphically Encrypted Allreduce SC ’23, November 12–17, 2023, Denver, CO, USA

Int, Fixed point Int, Bool Float, Complex

MPI_SUM MPI_PROD MPI_LXOR, MPI_BXOR MPI_SUM v1 MPI_SUM v2 MPI_PROD

Lossiness Lossless Lossless Lossless Minor Medium Minor

Security IND-CPA IND-CPA IND-CPA COA COA COA

Ciphertext inflation None None None Precision tradeoff Precision tradeoff Precision tradeoff

Hardware changes None None None Minimal, FPU Minimal, FPU Minimal, FPU

Table 2: Summary of supported operation and data types together with their properties.

note that ((𝑚 + 𝑛) mod 2
𝑏 − 𝑛 mod 2

𝑏) mod 2
𝑏 = (𝑚 + 𝑛 − 𝑛)

mod 2
𝑏 =𝑚 mod 2

𝑏
. Hence, the operations are lossless.

Security: The scheme defined by encrypting 𝑥 with 𝑥 + 𝑘 is

IND-CPA secure as long as 𝑘 is pseudorandom and unique between

encryptions as shown in [15, 14, 85] which our scheme fulfills

yielding semantic security under both adversary models.

5.1.2 Multiplication. Is defined on an abelian multiplicative group

Z∗
𝑑
with the order 𝑑 > 1 equal to the datatype length where we

use a pre-selected generator 𝑔 of the group. Modulo division is

equivalent to multiplying by the modular inverse of a number.

Encryption: we encrypt values as:

𝑐𝑖 [𝑗] =
{
𝑥𝑖 [𝑗] × 𝑔𝐹𝑘𝑒 (𝑘

𝑠
𝑖
+𝑘𝑐+𝑗) 𝑖 = 𝑃 − 1

𝑥𝑖 [𝑗] × 𝑔𝐹𝑘𝑒 (𝑘
𝑠
𝑖
+𝑘𝑐+𝑗)−𝐹𝑘𝑒 (𝑘𝑠𝑖+1+𝑘𝑐+𝑗) otherwise

(2)

Decryption: We decrypt as DS (𝑐 [𝑗]) = 𝑐 [𝑗] × 𝑔−𝐹𝑘𝑒 (𝑘𝑠0+𝑘𝑐+𝑗) .
Losslessness:As𝑔 is a generator, each noise used for encryption

in Equation 2 has an inverse implying no loss of information due

to inverse multiplication in modulo arithmetic.

Security: The scheme is IND-CPA secure under both adversary

models as the keys are unique and pseudorandom as shown in [85].

5.1.3 Logical and binary XOR. Are defined similarly to AES, where

𝑑 equals the datatype length.

Encryption: we encrypt values as:

𝑐𝑖 [𝑗] =
{
𝑥𝑖 [𝑗] ⊕ 𝐹𝑘𝑒 (𝑘𝑠𝑖 + 𝑘𝑐 + 𝑗) 𝑖 = 𝑃 − 1
𝑥𝑖 [𝑗] ⊕ 𝐹𝑘𝑒 (𝑘𝑠𝑖 + 𝑘𝑐 + 𝑗) ⊕ 𝐹𝑘𝑒 (𝑘𝑠𝑖+1 + 𝑘𝑐 + 𝑗) otherwise

(3)

Decryption: We decrypt as DS (𝑐 [𝑗]) = 𝑐 [𝑗] ⊕ 𝐹𝑘𝑒 (𝑘𝑠0 + 𝑘𝑐 + 𝑗).
Loss of information: XOR is inverible and follows 𝑎 ⊕ 𝑎 = 0,

𝑎 ⊕ 0 = 𝑎 yielding losslessness.

Security: The scheme is equivalent to the IND-CPA AES-CTR

algorithm [31, 30] under both adversary models due to the unique

and pseudorandom inputs provided.

5.1.4 Performance. Apart from simple algebraic operations, our

methods require evaluating two PRFs for encryption and one for

decryption. Additionally, encryption and decryption in multiplica-

tion require 𝑂 (log𝑑) modulo exponentiation. As our modulo is 2
𝑛
,

techniques such as the 2
𝑘
-ary method can improve the worst-case

performance [43].

To improve performance, we use the canceling technique [14,

85]. For all the methods, the noise from process 𝑖 + 1 is eliminated

by the noise from process 𝑖 . This lowers the overall number of op-

erations. The version of the scheme presented in Figure 1 is imple-

mented without the aforementioned cancellation. The encryption

then has one PRF evaluation, but decryption involves computing⊙
𝑖∈S 𝐹𝑘𝑒 (𝑘𝑠𝑖 + 𝑘𝑐 + 𝑗) scaling as 𝜃 (𝑃) instead of 𝜃 (1).

5.2 Fixed point operations
Fixed point transmissions can be implemented similarly to integer

transmissions. The implicit scaling factor has to be agreed upon

before any computations and is shared securely with all ranks. Cal-

culations rely on the same algorithms as in the integer case. The

number of involved processes can be used to obtain the correct

output scaling factor for multiplication and division. Fixed point

arithmetic is helpful in some machine learning applications involv-

ing quantization and inference [48, 63, 56, 35, 53, 69] and is often

used as a replacement for floating points in HE schemes [17, 24].

5.3 Floating point operations
While floats form the basis for most scientific computing, to the best

of our knowledge, there does not exist a floating point HE frame-

work that would be performant. To address this gap, we introduce

HFP, a part of HEAR. Before formally discussing HFP in Section

5.3.1, we make the following assumption about the representation

of a floating point number 𝑎 with a sign bit 𝑠 , a base 𝑏, an exponent

𝑒 , and mantissa𝑚:

𝑎 = (−1)𝑠 ×𝑚 × 𝑏𝑒 = (−1)𝑠 × 1.𝑚1𝑚2 ...𝑚𝑙𝑚 × 𝑏
𝑒1𝑒2 ...𝑒𝑙𝑒 (4)

We assume 𝑒 of binary length 𝑙𝑒 and 𝑚 of binary length 𝑙𝑚 . We

set the mantissa𝑚 to a normalized hidden one format where the

leading one is implicit and is not stored in the underlying binary

representation.We set the exponent 𝑒 to a two’s complement format.

We define the set of values this encoding represents as F. While

similar to the IEEE 754 standard [54], we do not limit ourselves to

its specifics (subnormals, special numbers, offset stored exponents,

etc.). The base 𝑏 is agreed upon a prior (e.g., 2 in IEEE 754).

5.3.1 Cryptographic scheme. We formally define a floating point

encryption scheme HFP=(gen, enc, dec) relying on multiplying the

float 𝑥 by a noise. Beforehand, we provide the intuition behind it.

We first move from a representation such as IEEE 754 to one that

operates on a ring of values. We then place the floats along such a

ring, ensuring that multiplication or addition can be evaluated. The

adversary does not know the shifting in the ring, which provides

security. The float value ring is achieved by creating a ring on the

exponents. In the case of addition, we expand the exponent length

by two bits and introduce a new addition arithmetic. In the case of

multiplication, we turn the exponent into a ring without expansion.

Both might require hardware changes, as explained in Section 5.3.6.

A different perspective to look at this scheme is by considering

log number systems [59, 92] where the multiplication of arguments

turns into an addition of their logarithms. Moving the floating point

into a logarithmic space allows us to change the encoding from

Equation 4 to fixed point integers, enabling the same security as in

the integer case.

SC ’23, November 12–17, 2023, Denver, CO, USA Marcin Chrapek, Mikhail Khalilov, and Torsten Hoefler

Int, 4 bits, modulo 2
4
=16, subgroup generator 3 Float, half precision (𝑙𝑒 = 5, 𝑙𝑚 = 10)

MPI_SUM (sec. 5.1.1) MPI_PROD (sec. 5.1.2) MPI_BXOR (sec. 5.1.3) MPI_SUM (sec. 5.3.3) MPI_PROD (sec. 5.3.2)

Rank 1 Rank 2 Rank 1 Rank 2 Rank 1 Rank 2 Rank 1 Rank 2 Rank 1 Rank 2

Values [1, 5] [3, 8] [2, 4] [7, 2] 0011 0010 1.75×27 1.25×29 1.125×29 1.375×21
Expected [4, 13] [14, 8] 0001 1.6875×29 1.547×210

Noise [2, 1] [1, 7] [3
1 = 3,3

2 = 9] [3
1 = 3,3

0 = 1] 0101 1001 1.5×213 1.75×222 1.25×2−13
Method Add (eq. 1) Multiply (eq. 2) XOR (eq. 3) Multiply (eq. 7) Multiply (eq. 6)

Encrypted [2, 15] [4, 15] [2, 4] [5, 2] 1111 1011 1.3125×221 1.875×222 1.575×244 1.719×2−12

Reduced [6, 14] [10, 8] 0100 1.266×223 1.354×233

De-noise [2, 1] [3
−1 = 11, 9

−1 = 9] 0101 1.5×213 1.75×222
Method Subtract Multiply XOR Divide Divide

Decrypted [4, 13] [14, 8] 0001 1.6875×29 1.547×210

Table 3: Simplified examples of encryption and decryption for different schemes and operations. Note that 3 is only a subgroup
generator used for illustrative purposes and does not provide the required security.

Similarly to the key generation procedure at the beginning of

Section 5, we assume a PRF 𝐹𝑘 (𝑥) mapping inputs of length 𝑛 and

generating values in F. 𝑛 is a user-selectable security parameter,

and the size 𝑑 of the output of the PRF is the size of the encrypted

floating point data type plus 𝛾 . 𝛾 represents a user-selectable param-

eter controlling the inflation of the data type and its tradeoff with

precision loss and COA security. 𝛾 is at least zero and is discussed

further in the section.

gen(1
𝑛
): generate a symmetric key from uniform 𝑘 ∈ {0, 1}𝑛 .

enc(k, x): choose uniform 𝑟 ∈ {0, 1}𝑛 . Consider plaintext 𝑥 ∈ F
decomposed as (−1)𝑠𝑥 ×𝑚𝑥 × 2𝑒𝑥 and noise 𝐹𝑘 (𝑟) ∈ F as (−1)𝑠𝑓 ×
𝑚𝑓 × 2𝑒𝑓 where 𝑙𝑚𝑓

= 𝑙𝑚𝑥
− 𝛿 + 𝛾 and 𝑙𝑒𝑓 = 𝑙𝑒𝑥 + 𝛿 . Output the

ciphertext 𝑐:

𝑐 = 𝑥 ⊗ 𝐹𝑘 (𝑟) = (−1)𝑠
′
×𝑚′ × 2𝑒

′
(5)

where ⊗ is defined such that 𝑠′ = 𝑠𝑥 + 𝑠𝑓 mod 2,𝑚′ = 𝑚𝑥 ×𝑚𝑓

and 𝑒′ = 𝑒𝑥 + 𝑒𝑓 mod 2
𝑙𝑒+𝛿

. The resulting𝑚′ should be of length

𝑙𝑚−𝛿+𝛾 . If𝑚′ is not in the hidden one format, it must be normalized

by shifting.

𝛿 is necessary for correct functioning and security purposes as

described in Section 5.3.5. 𝛿 introduces additional bits to the ex-

ponent, increasing its length. The value of 𝛿 depends on which

homomorphic operation the encryption should support. It equals

zero for multiplication and two for addition. 𝛾 controls precision

loss due to encryption/decryption by adding ciphertext inflation

bits to the representation. The optimal choice of 𝛾 depends on the

supported homomorphic operation. The most performant opera-

tions would be aligned with current data type lengths, implying 𝛾

equal to zero for multiplication and two for additions.

dec(k, r, c): output the plaintext 𝑥 = 𝑐⊗𝐹𝑘 (𝑟)−1 where 𝐹𝑘 (𝑟)−1 =
(−1)𝑠𝑓 × 1/𝑚𝑓 × 2−𝑒𝑓 with appropriate mantissa normalization.

Security: we discuss the scheme’s security. In HFP, both sign

and exponent bits operate on arithmetic rings. As such, they pro-

duce uniform outputs, giving the adversary no advantage other

than brute-forcing over possible keys and finding the one providing

the seen output. However, as we multiply mantissas in our encryp-

tion, the resulting ciphertexts will not be uniform but produce a

piecewise smooth logarithmic distribution [28]. Such probability

distribution gives the adversary a statistical advantage as some

plaintexts are more likely to produce specific ciphertexts.

We show that this statistical edge is negligible and evaluate it by

considering a probabilistic polynomial time adversary A. A can

use Bayesian statistics [95] to find the optimal strategy to obtain an

edge over a simple brute-force attack. A implements a maximum

a posteriori (MAP) [38] estimator for the plaintext 𝑋 based on

ciphertext 𝐶 . A observes ciphertext 𝑐 and makes a guess 𝑥𝑔 as:

𝑥𝑔 |𝑐 = argmax𝑥 Pr(𝑋 = 𝑥 |𝐶 = 𝑐)

Using Bayesian rules and Pr(𝐶 = 𝑐) being independent of 𝑋 :

𝑥𝑔 |𝑐 ∼ argmax𝑥 Pr(𝐶 = 𝑐 |𝑋 = 𝑥)Pr(𝑋 = 𝑥)

We assume an uninformative uniform prior Pr(𝑋 = 𝑥) over all
possible mantissa leading to the likelihood:

𝑥𝑔 |𝑐 ∼ argmax𝑥 Pr(𝐶 = 𝑐 |𝑋 = 𝑥)

A obtains the likelihood bymeasuring possible ciphertexts given

the random output of the PRF. We examined the average probability

of success for MAP for FP32 to measure the statistical edge A
gets through our encryption. For each possible mantissa 𝑋 we

measured all the possible ciphertexts 𝐶 by iterating over all the

possible PRF outputs. Assuming that PRF outputs are uniform, we

obtained the likelihood by normalizing the results. Adversary A
achieves the average probability of a guess of 3.57 × 10

−7
. The

maximum probability of a guess over all of 𝑋 is 3.58× 10−7 and the
minimal 2.38 × 10−7. The reference uniform probability of a guess

is 1.19 × 10−7. The adversary A only obtains a minor advantage.

Importantly, this type of attack can easily become unfeasible for

the adversary A. As the number of possible PRF outputs grows

exponentially with the data type size (𝛾 controllable), attacking

through such a ciphertext attack is impractical, displaying COA

properties. Additionally, obtaining keys and inputs of the PRF

through this strategy is also not viable as the key space grows

exponentially with the number of key bits 𝑛, assuming that the

PRF is secure and that the input of the PRF is random between

encryptions.

5.3.2 Multiplication. Webasemultiplication on canceling the noise

between nodes and the exponent logic described in Section 5.3.5

without any exponent inflation (𝛿 = 0).

Encryption: we encode values as in equation 4. Then 𝑥𝑖 [𝑗] can
be encrypted to a ciphertext 𝑐𝑖 [𝑗] assuming the same definition of

HEAR: Homomorphically Encrypted Allreduce SC ’23, November 12–17, 2023, Denver, CO, USA

10 5

10 3

10 1

101

Native HEAR = 2 HEAR = 1 HEAR = 0

10 9

10 7

10 5

10 3

10 18

10 16

10 14

10 12

10 10

FP16

10 4

10 3

10 2

10 1

FP32

10 9

10 7

10 5

FP64
10 18

10 17

10 16

10 15

10 14

Re
la

tiv
e

er
ro

r

Ad
di

tio
n

M
ul

tip
lic

at
io

n

Figure 3: The precision loss against the different floating
point types for multiplication and addition operations. 𝛾
signifies the number of bits by which the ciphertext has
expanded to reduce precision loss.

⊗ as in Section 5.3.1 and equation 5 as:

𝑐𝑖 [𝑗] =
{
𝑥𝑖 [𝑗] ⊗

𝐹𝑘𝑒 (𝑘𝑠𝑖 +𝑘𝑐+𝑗)
𝐹𝑘𝑒 (𝑘𝑠𝑖+1+𝑘𝑐+𝑗)

𝑖 = 𝑃 − 1
𝑥𝑖 [𝑗] ⊗ 𝐹𝑘𝑒 (𝑘𝑠𝑖 + 𝑘𝑐 + 𝑗) otherwise

(6)

Decryption: we decrypt as DS (𝑐 [𝑗]) = 𝑐 [𝑗] ⊗ 𝐹−1
𝑘𝑒
(𝑘𝑠

0
+ 𝑘𝑐 + 𝑗).

Loss of information:multiplication and division in the scheme

introduce precision loss. To evaluate how much information is lost

when passing through encryption and decryption, we used a multi-

ple precision floating point number framework MPFR [36] based

on GMP [46]. We ran 10,000 iterations, summing 10,000 randomly

selected floats, resulting in an exponential sampling of values. Such

sums are representative of typical numbers observed in the work-

ing conditions of HEAR. We measured the loss by comparing the

absolute difference between the value after passing through HEAR

and the native float value relative to the sum obtained using 1024

bits of precision. Figure 3 presents the relative precision loss against

the floating point type used for multiplication. The precision differs

from the native version by about one-tenth of an order of magni-

tude. We did not expand the ciphertext for multiplication, implying

𝛾 = 0. In the case of multiplication 𝛿 = 0, hence, we operate on the

same precision as normal floats.

Security: as shown in section 5.3.1, the scheme is COA secure.

The multiplication scheme is robust against both adversary models

and provides all three types of safety.

5.3.3 Addition. We base addition on the expanded exponent logic

described in Section 5.3.5.

Encryption: we encode values as in equation 4. Then 𝑥𝑖 [𝑗] can
be encrypted to a ciphertext 𝑐𝑖 [𝑗] assuming the same definition of

⊗ as in Section 5.3.1 and equation 5 as:

𝑐𝑖 [𝑗] = E(𝑥𝑖 [𝑗]) = 𝑥 ⊗ 𝐹𝑘𝑒 (𝑘𝑐 + 𝑗) (7)

Decryption: we decrypt as: DS (𝑐 [𝑗]) = 𝑐 [𝑗] ⊗ 𝐹−1
𝑘𝑒
(𝑘𝑐 + 𝑗).

Loss of information: analogously to the multiplication opera-

tion, division, and multiplication introduce information loss. Figure

3 also presents the relative precision loss against the floating point

type used for addition. The results are obtained similarly to the mul-

tiplication case with larger sums of 100,000 elements. We present

three cases for ciphertext inflation. The best for precision is 𝛾 = 2.

However, it yields two additional bits in the representation, losing

some advantages of INC. Similarly to multiplication, the precision

loss is only a small part of the order of magnitude. In the worst case

(𝛾 = 0), the precision drops slightly less than an order of magnitude.

Security: as shown in section 5.3.1, the scheme is COA secure.

The addition scheme is robust against the single-process adversary

model where the adversary can only infer a single message, and

global safety is unnecessary. This is crucial as the addition only

provides temporal and local safety.

5.3.4 Alternative addition. We provide an alternative addition

scheme that sacrifices performance and precision for more robust

security for applications that require global safety. We base it on the

multiplication of exponents.We first encode the values as exponents

of an exponential function and then reduce them multiplicatively,

which implies a sum of their exponents. We then decode the values

after the decryption.

Encryption: we encode the values as 𝑥𝑖 [𝑗] → 𝑒𝑥𝑖 [𝑗] =

𝑎𝑖 (𝑥𝑖 [𝑗]). We then use the multiplicative float scheme to send the

values 𝑎𝑖 .

Decryption: after obtaining the product𝐴 = 𝑒
∑

𝑖∈S 𝑎𝑖 we decode

by taking the logarithm as log(𝐴) = ∑
𝑖∈S 𝑥 [𝑗].

Loss of information: Exponentiation leads to decreased dy-

namic range and loss of precision. This is especially true for values

far from the origin. Themethod is useful when the values are known

to be in a small range, e.g., in machine learning weights [90] which

are normalized [82].

Security: the scheme provides the same security guarantees as

multiplication.

5.3.5 Exponent logic. We introduce a new exponent arithmetic,

which is conducted modulo 𝑙𝑒 +𝛿 where 𝑙𝑒 is the length of the expo-

nent of the original floating point, 𝛿 is zero for multiplication and

two for addition. The modifications are necessary due to security

reasons. We first describe the logic for conceptually simpler mul-

tiplication and move to addition afterward. We use the exponent

with 𝑙𝑒 = 4 (from 0 to 15) as an example to display the concepts.

Floating point multiplication is normally conducted by adding

two exponents, multiplying the mantissas, and normalizing the

result. Multiplying two numbers as described in Section 5.3.1 could

lead to an exponent overflow. The typical IEEE standard would

cap those values at the maximum infinity exponent. However, we

cannot have such a cap if we consider encryption. For example, if

the adversary knows that infinity has exponent 2
𝑙𝑒 − 1 = 15, they

also know that the maximum possible exponent is encrypted as 14,

allowing for arbitrary decryption by mapping all other exponents

and breaking any security guarantees. Thus, we allow the exponent

to operate like a ring in our multiplicative case. Multiplications and

divisions can then be reverted, and message exponents get encoded

randomly along the ring, yielding the same security guarantees for

the exponents as in the integer case.

The addition is more complex. Typical floating point addition

works by comparing the exponents of two numbers, shifting the

mantissa of the one with the smaller exponent by the difference

SC ’23, November 12–17, 2023, Denver, CO, USA Marcin Chrapek, Mikhail Khalilov, and Torsten Hoefler

between the exponents, and adding the mantissas. If we assume two

floats 𝑓1 and 𝑓2, and two random numbers 𝑟1 and 𝑟2, once multiplied

together 𝑓1𝑟1 + 𝑓2𝑟2, the sum of 𝑓1 + 𝑓2 cannot be extracted because

of different scales. Thus, all the numbers within one summation

chain need to be scaled with the same random number to preserve

the order of the numbers. Furthermore, we lose the order if we

consider multiplication between 𝑓1𝑟1 that overflows the exponent.

For example, a number with exponent 2
𝑙𝑒 −1 = 15 can be encrypted

to an exponent equal to 0, making it the smallest number. This is

crucial for addition as comparing two exponents decides which

number gets shifted and by how much. We propose a solution to

this problem by expanding the exponent by one bit and using this

structure in a novel way. The comparison operator now changes to

two comparisons. For two exponents, 𝑒1 and 𝑒2, we calculate 𝑒1 −𝑒2
and 𝑒2 − 𝑒1. We choose the smaller of the two as the difference and

treat the number from which the other was subtracted as the larger

one. Notably, only the smaller difference will correspond to a valid

exponent. For example, for the aforementioned 𝑙𝑒 = 4, we would

work in arithmetic modulo 2
𝑙𝑒+1 = 32. Then, if we assume 𝑒1 = 2

and 𝑒2 = 21, 𝑒1 − 𝑒2 = 13 and 𝑒2 − 𝑒1 = 19. Note that 19 is not a

valid exponent, so 𝑒1 > 𝑒2 for the addition operation. Finally, when

encrypting as described in Section 5.3.1, the maximum result of

mantissa multiplication in the case of two mantissas having just

binary ones is above 2, which requires shifting the mantissa to the

right and adding one to the exponent. However, this additional one

can again break the order. For example, for 𝑒1 = 31 and 𝑒2 = 16, if

encryption increases 𝑒1 by one due to mantissa overflow, 𝑒1 = 0

gives indistinguishable exponents as both differences are equal to

16. Thus, we must increase the exponent by one more bit. The

resulting ciphertext exponent has two more bits than the plaintext.

Increasing the exponent range without allowing overflow is

invalid, making the scheme vulnerable to rainbow table type at-

tacks [61]. For example, suppose we do not allow overflows, set

𝑒1 = 15, and the exponent of random noise 𝑒𝑟 = 16. Then 𝑒1+𝑒𝑟 = 31.

In that case, the adversary knows this number could be obtained

only with one combination of maximum plaintext exponent and

maximum random noise exponent.

5.3.6 Limitations. As Section 5.3.5 points, HEAR cannot directly

support any caps such as Infinity, not a number (NaN), zero, or any

other special number due to security constraints. Zero gets first

encoded as the smallest possible number and then treated as such.

The support for NaN or Infinity could be added with a special bit in-

dicating such a status. However, the bits of the mantissa, exponent,

and sign must still be scrambled. An alternative approach to detect

zero or infinity is using additional exponent bits, which would sig-

nal an under- or overflow if still set after decryption. This is already

provided by addition. Furthermore, as HEAR is incompatible with

IEEE 754, floating point operations in HEAR require changes in the

FPU. The new FPU can be emulated in software if the INC hard-

ware allows for this. Otherwise, HEAR requires hardware changes

enabling features such as working on nonstandard exponents de-

scribed in Section 5.3.5. Alternative schemes have been developed

to replace IEEE 754 [49], for which HEAR could also be suitable.

Finally, HEAR operates on a tradeoff of precision and ciphertext

inflation (quantified by 𝛾). The lost precision can be compensated

for by additional bits, which increases bandwidth usage.

5.4 Other operations
In HEAR, the orders of magnitude faster operation than in other

schemes comes from the invertible nature of encryption. All of

our schemes rely on the existence of an easily computable inverse

operation. However, some logical operations such as AND and OR
have no inverse and cannot be easily ported to our framework.

These could be implemented as summations where if the sum is

zero, OR and AND are zero. If it’s P, OR, and AND are one. Otherwise, OR
is one, and AND is zero. Yet, this considerably increases bandwidth

usage as our ciphertext grows as 𝑂 (log
2
𝑃).

Furthermore, some operations such as min and max are not al-

lowed due to security constraints. If we enable the network to

compare two values and determine which is larger, the adversary

can encrypt an increasing set of values and determine the plain-

text. Thus, all these operations must either use FHE schemes or be

performed within the TEEs.

Similarly, arbitrary user-defined functions are not allowed due to

the same security concerns. The users can specify functions based

on the implemented schemes as long as these use only one operation

type or are preprocessed in a secure environment. For example,

to implement a variance calculation of a random variable 𝑋 with

mean zero, the nodes can compute 𝑋 2

𝑖
on their samples and sum

the results using HEAR. Furthermore, one can freely implement

INC functions that combine modes of supported operations, e.g.,

adding data from even ranks and subtracting data from odd ranks.

5.5 Result verification
While we covered the confidentiality of data, we have not discussed

verification. If the secure environment within which we run the

application is based on TEEs, some of them might require integrity

protection [25]. HE is malleable by design [14] and provides no

integrity checks. This issue can be resolved by adding a homo-

morphic message authentication code (HoMAC) [16] derived from

the encrypted values. While conceptually similar to normal MACs,

HoMACs enable conducting homomorphic operations on the data

and produce tags that authenticate the computation [16]. More

precisely, each rank generates a tag 𝜎𝑖 [𝑗] for each ciphertext in the

Allreduce vector 𝑐𝑖 [𝑗], and sends to the network a pair of values

(𝜎, 𝑐𝑖 [𝑗]). 𝜎 is computed as:

𝜎 = HoMAC𝑠𝑖 [𝑗] (𝑐𝑖 [𝑗]) =
𝑠𝑖 [𝑗] − 𝑐𝑖

𝑍
mod 𝑝

where 𝑐𝑖 [𝑗] is the ciphertext, 𝑠𝑖 [𝑗] is per ciphertext homomor-

phic key generated randomly, 𝑍 the overall verification key and

𝑝 a prime number of length 𝜆 bits. 𝜆 represents a security param-

eter. INC conducts a sum over all of the pairs

∑
𝑖∈S(𝑐𝑖 [𝑗],𝜎𝑖 [𝑗]) =

(𝑐𝑡 [𝑗], 𝜎𝑡 [𝑗]). After the reduction, the ranks verify that

∑
𝑖∈S 𝑠𝑖 [𝑗]

is equal to 𝑐𝑡 [𝑗] + 𝜎𝑡𝑍 mod 𝑝 . The operations can be improved by

using a canceling method similar to the one in Sections 5.1-5.3 [14]:

𝜎 = HoMAC𝑠𝑖 [𝑗] (𝑐𝑖 [𝑗]) =
𝑠𝑖 [𝑗] − 𝑠𝑖+1 [𝑗] − 𝑐𝑖

𝑍
mod 𝑝

where we ignored the edge conditions for rank 0 analogous to

the encryption case. While HoMACs solve the problem of result

verification, they are not free. The overhead is linear with the

security parameter and might cause more than 200% inflation for

reasonable 64-bit 𝑝 . Additionally, the version of the scheme for

HEAR: Homomorphically Encrypted Allreduce SC ’23, November 12–17, 2023, Denver, CO, USA

0 1000 2000 3000 4000 5000 6000 7000
Latency [cycles]

OpenSSL SHA1

AES-NI + SSE2

Cray MPICH

 75.5%
 7.1%

16B message size

mem_alloc encrypt comm decrypt mem_free

Figure 4: The latency breakdown of the critical path for a 16 Bytes MPI_Allreduce integer summation call on two ranks for two
methods and their overheads as a percentage of the communication time measured with 100,000 iterations.

Figure 5: The encryption throughput for different PRNG
methods as measured with 100 iterations on a single node.
The standard deviation displays the performance across mul-
tiple buffer sizes.

multiplication [16] is scaling as 2
𝑁

where 𝑁 is the number of

operations. Assuming log𝑁 INC operations, the space overhead

grows as 𝜃 (𝑁) and is not scalable. To the best of our knowledge,

HoMACs for the XOR operation and floats do not exist.

6 IMPLEMENTATION
We describe libhear, the end-to-end implementation of HEAR.

libhear is a middleware C++ library that adds encryption and

decryption functionality to MPI_Allreduce using PMPI and resides
between the application and the MPI runtime. As libhear is based

on the PMPI interface, it is MPI implementation-independent. Ad-

ditionally, libhear does not change the code base or require ap-

plication recompilation. To enable MPI_Allreduce encryption, the

user only needs to conduct an LD_PRELOAD of libhear while run-
ning the MPI job. We discuss how libhear implements the steps of

HEAR and how we optimized the library for performance, includ-

ing implementing vectorization, AES-NI instructions, a memory

pool, and network pipelining. Finally, we describe the experimental

setup for all the results in Section 7.

Initialization: libhear performs the required key generation,

exchange, and per rank state initialization of HEAR during commu-

nicator creation (e.g., MPI_Init, MPI_Comm_create. After initial-
ization, libhear intercepts the MPI_Allreduce calls and performs

encryption and decryption for specific data and operation types,

including MPI_INT with MPI_SUM, and MPI_FLOAT with MPI_SUM.
Cryptographic operations: libhear provides a highly opti-

mized version of encryption and decryption for the x86 ISA. We

refined our implementation to enable two scenarios with distinct

performance requirements targeted by INC:

(1) High-throughput for large message sizes (e.g., 16 MiB) and

100-800s Gbit/s link bandwidths.

(2) 𝜇s-scale latency of inter-process synchronization focusing on

small messages such as 16 B.

As critical path profiling of naïve HEAR implementation suggests

in Figure 4, the PRF calls are the largest contributor to the time of

encryption. We focused on choosing the best PRF for our needs. We

investigated multiple possibilities and focused on SHA1 [32] and

AES [31] as primary candidates who achieve good performance [93].

High-throughput scenario: Figure 5 shows encryption and

decryption throughput of HEAR on a single Intel Xeon E5-2695 v4

@ 2.10GHz core for both integer and float summation. The vector-

ized integer implementation using OpenSSL [94] SHA1 achieves

less than 1GB/s/core for encryption and decryption predominantly

because of the lack of hardware acceleration. We optimized perfor-

mance by utilizing 128-bit AES-NI x86 ISA extensions [4]. We com-

bined AES-NI with loop unrolling to enable automatic SSE2 128-bit

vectorization by the compiler. Such a version achieves 5GB/s/core

for encryption and 11.7GB/s/core for decryption. To further im-

prove performance, we hand-tuned SSE2 vectorization, which in-

creases encryption and decryption throughput up to 9GB/s/core

and 18GB/s/core. In libhear, SHA1 is unsuitable for modern (100-

200 Gbit/s) and emerging (400-800 Gbit/s) HPC network line rates,

while the AES-NI can saturate them with a modest number of one

to five processes per node (PPN).

Using the insights from integer experiments, we avoided SHA

and focused on AES for floats. We developed two variations for float

summation: non-vectorized and loop unrolled versions. Even with-

out hand-tuning, the automatically vectorized variant is an order of

magnitude faster than the Aries NIC bandwidth of 0.347GB/s/core.

Low-latency scenario: Figure 4 displays the latency breakdown
for the critical path of integer summation collected with x86 RDTSC

counters. Similarly to the throughput case, SHA1 is worse and

introduces larger latencies than AES-NI. The hardware-enhanced

AES-NI also reduces CPU cycle overhead for small messages to 7.1%

compared to SHA1-based libhear implementation achieving 75.5%.

We selected AES-NI-based implementation as the PRF backend of

libhear and conducted all further experiments on such a version.

Communication: To further optimize libhear for data-heavy

applications such as gradient summing in distributed ML [8], we ex-

ploit non-blocking MPI collectives and implement network pipelin-

ing. We use non-blocking MPI_Iallreduce to overlap the process-

ing of receive and send buffers with communication. Specifically,

we overlap the decryption of 𝑛 − 1th send-buffer block and encryp-

tion of 𝑛 + 1th block with the encrypted 𝑛th block reduction done

in the network or the MPI implementation.

SC ’23, November 12–17, 2023, Denver, CO, USA Marcin Chrapek, Mikhail Khalilov, and Torsten Hoefler

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Throughput per rank [GB/s]Cray

 MPIC
H

Naïv
e (

syn
c)40
96

81
9216

38
432

76
865

53
613

10
7226

21
4452

42
8810

48
57

6
20

97
15

2
41

94
30

4

Ia
llr

ed
uc

e
bl

oc
k

siz
e

[B
]

 A
rie

s N
IC

 b
an

dw
id

th
 [0

.3
47

GB
/s

/ra
nk

]

 66.7%
 42.1%

 60.0%
 69.3%

 77.2%
 81.7%

 85.9%
 85.4%

 72.3%
 63.2%

 59.2%
 52.4% 16MiB message size

Figure 6: The 16MiB encryption/decryption throughput for
different pipelining blocks as measured with 1000 iterations.
We show for reference the non-pipelined, synchronous Naïve
version and the baseline Cray MPICH. We display the frac-
tion of performance as compared to Cray MPICH.

Memory allocation: During libhear initialization, we pre-

allocate a page-aligned memory pool to handle intermediate send

buffer blocks. The memory pool helps to avoid dynamic memory

allocation with malloc and alleviates the cost of memory regis-

tration (pinning) done by the underlying MPI implementation on

the Remote Direct Memory Access (RDMA) data path [65]. Figure

6 displays the throughput per rank achieved with different block

sizes. With an optimal block size of 131-262KiB, we achieved nearly

0.27GB/s/rank, which is 14% less than the native Cray MPICH at

full CPU utilization (i.e., 36 PPN).

Results validation:We validated the correctness of MPI_FLOAT
scheme in libhear by running 10 million iterations of number

encryption-decryption. Observed relative error of numbers after

decryption varied from the original number by average 1.3 × 10−7.
MPI_INT summation correctness was verified by comparing the con-

tents of MPI_Allreduce receive buffers of libhear and reference

MPI implementation using std::memcmp function.

7 EVALUATION
We evaluate the overhead of libhear for communication on a su-

percomputing system Piz Daint [75]. We deploy our workloads

on compute nodes with two 18-core Intel Xeon E5-2695 v4 @

2.10GHz CPUs based on the Broadwell microarchitecture coupled

with 128 GB of DDR3 memory. Piz Daint is based on the 100Gbit/s

Aries interconnect. We compile our code with clang (v.13.0.1)
and -O3 -ffast-math -march=native flags and use Cray MPICH

(PrgEnv-cray/6.0.10) as a reference MPI implementation. We

evaluate the latency and throughput scaling of libhear using

OSU micro-benchmarks (v7.1) [71]. We then analyze its influence

on the performance of a set of deep neural network (DNN) proxy ap-

plications relying heavily on Allreduce [52]. Similarly to Section 6,

we focus on two crucial aspects of INC, throughput improvements

for large messages and latency improvements for small messages.

7.1 Scaling benchmarks
Throughput: For large messages, we evaluate libhear throughput
scaling with respect to the number of MPI ranks. Figure 7 shows

2 4 8 36 72 144 288 576 1152
Number of ranks

2

4

6

8

10

12

Th
ro

ug
hp

ut
 p

er
 n

od
e

[G
B/

s] Aries NIC 100Gbit/s = 12.5GB/s

 2
 n

od
es

 c
ap

ac
ity

 4
 n

od
es

 8
 n

od
es

 1
6

no
de

s

 3
2

no
de

s

PPN scaling
Node scaling

 16MiB message size
Cray MPICH
HEAR

Figure 7: The scaling of the MPI_Allreduce throughput as the
number of ranks increases with two sections: PPN scaling on
two nodes and node scaling. The boundaries displaymin/max
rangewhile the lines are themeans.HEAR scales consistently
and achieves about 80% of Cray MPICH’s throughput.

2 4 8 36 72 144 288 576 1152
Number of ranks

100

101

La
te

nc
y

[u
s]

 2
 n

od
es

 c
ap

ac
ity

 4
 n

od
es

 8
 n

od
es

 1
6

no
de

s

 3
2

no
de

s

 16B message size

PPN scaling
Node scaling

Cray MPICH
HEAR

Figure 8: The scaling of the MPI_Allreduce latency as the
number of ranks. We show two scaling sections: PPN on two
nodes and > 2 nodes. The boundaries display min/max while
the lines are themeans. HEAR scales well with low overhead.

the throughput of libhear alongside the native Cray MPICH for

integer summations. We run two trials with 1000 iterations each.

We display two sections: PPN scaling and node scaling. For the PPN

scaling, we increased the number of ranks on a two-node allocation

without increasing the number of nodes. For the node scaling, we

doubled the number of nodes at each iteration. At its peak, Cray

MPICH reaches 11.1GB/s, steadily reducing the performance after-

ward due to communication overhead between the nodes. At its

peak, libhear reaches a throughput of 9.5GB/s, achieving 85% of

Cray’s MPICH bandwidth. libhear scales in the same way as Cray

MPICH, consistently achieving around 80% of the performance

provided by the native implementation.

Latency:We evaluate libhear 16B latency scaling with respect

to the number of ranks. Figure 8 shows the latency of libhear
alongside the native Cray MPICH for integer summations. We run

two trials with 100,000 iterations each. Similarly to the throughput

experiment, we display two sections: PPN scaling and node scaling.

For the PPN scaling, we increased the number of ranks on a two-

node system without increasing the number of nodes. For the node

scaling, we doubled the number of nodes at each iteration. As

expected, the two sections display different scaling. libhear is

again scaling like the native Cray MPICH and does not introduce

significant latency overhead. As the number of ranks increases, the

noise within the network grows considerably [26], as visible by the

minimum and maximum range. This leads to libhear achieving

even lower latency than Cray MPICH, indicating minimal overhead

libhear introduces. The overhead is small enough to hide within

the network noise for a larger number of ranks.

HEAR: Homomorphically Encrypted Allreduce SC ’23, November 12–17, 2023, Denver, CO, USA

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Relative execution time

Cosm
oFl

owDLR
MGPT
3

Re
sN

et-
15

2

 111.3%
 117.3%

 103.1%
 131.2%

Figure 9: Simulated relative average execution time of one
iteration of distributed DNN training while running with
HEARas normalized towithout it. GPT3 training parallelized
across 384 ranks (48 nodes, 8 PPN); ResNet-152, DLRM, and
CosmoFlow scaled to 256 MPI ranks (8 nodes, 32 PPN).

7.2 Performance of DNN training
We also assess overheads from libhear using several distributed
deep neural network (DNN) training proxy-workloads [52]. We

select this workload as a significant part of the distributed Stochastic

Gradient Descent (SGD) neural network training algorithm consists

of a gradient averaging using Allreduce [8]. As such, we consider

DNN training as a worst-case scenario, giving a realistic upper

bound of the libhear impact on the overall application throughput.

In our setup, the gradient averaging part of distributed SGD is

modeled using MPI_Allreduce with MPI_FLOAT (FP32) data type

with message size proportional to the number of model parameters.

In Figure 9, we report simulated performance overheads of one

training iteration for ResNet-152, GPT3, DLRM, and CosmoFlow

models. We observe the highest overheads (1.31×) with ResNet-152

training, whose communication part consists of only Allreduce

calls. For other models (i.e., DLRM, CosmoFlow, and GPT3) where

the communication also includes the synchronization with other

MPI collectives (e.g., MPI_Alltoall) and point-to-point operations,
libhear introduces minor overhead that varies from 3% to 17.5%.

We note that these overheads could be eliminated by further over-

lapping computation (i.e., training on GPUs) with non-blocking

HEAR communication that could be implemented in hardware.

8 HEAR EXTENSIONS
HEAR is implemented in software and uses hardware acceleration

for the PRF evaluation to enhance its encryption and decryption

routines. However, some methods, such as converting a standard

float to HEARs representation or addition and multiplication on the

new type, create overhead that could be lowered by implementing

the operations in hardware.

Our open-source HEAR implementation, libhear, allows users
to add new data types and operations transparently and with low

overhead. It provides the PRF implementation in a vectorized,

hardware-accelerated way, allowing for further high-performance

expansion. While Allreduce and Reduce are the most commonly

used collectives, HEAR can be extended to other collectives such

as broadcast, all-to-all, scatter, and gather communication. These

would work similarly to Allreduce, however, without any INC. One-

to-one communication can also be implemented using a matrix of

keys rather than a constant number of keys. However, this scales as

𝜃 (𝑁) in space, worse than 𝜃 (1) of the other HEAR methods. In one-

to-one communication, HEAR could be used for atomic operations.

Such broad support might be significant if HEAR is implemented in

hardware. It can then avoid having multiple encryption standards

over the same communication layer.

9 CHALLENGES AND OPPORTUNITIES
HEAR shows that cHPC can be achieved while maintaining cru-

cial performance. However, HEAR only opens the discussion about

cHPC in the community. cHPC poses fundamental challenges where

the additional security introduces latency, energy, and silicon costs

taking resources from other performance features. Even relatively

simple algorithms such as AES can have overcomplicated imple-

mentations that reach 4.2 cycles/byte/thread [4] of encryption and

decryption while using 275pJ/bit of energy [1]. While this can be ac-

ceptable for long-distance networks, performance on integrated and

short-distance links such as CXL [87] might suffer. Furthermore,

the current TEE ecosystem does not support cHPC. Challenges

such as lack of Non-Uniform Memory Access (NUMA) [6] and

RDMA [93] support, hardening and optimizing HPC libraries like

Open MPI [37], creating scalable distributed attestation [22], and

enhancing resource orchestrators such as Slurm [99] remain open.

Despite all challenges, cHPC can enable performance-hungry per-

sonalized medicine (e.g., AI-based gene analysis, private chatbot

doctors) and finance (e.g., preventing fraud, running hedge-fund

proprietary algorithms) [67, 66]. cHPC offers strong security guar-

antees, where no confidential data is shared with the computing

agent and where computation results can be entrusted. As HEAR

demonstrates, by leveraging fundamental and streamlined security

technologies such as novel homomorphic computing schemes, we

can achieve these security gains while preserving performance.

10 CONCLUSIONS
We presented HEAR, a first-of-a-kind framework supporting homo-

morphically encrypted Allreduce operation enabling confidential

INC. Unlike many HE schemes, HEAR is geared toward the specific

security needs of HPC. To quantify those, we presented a threat

model corresponding to the common HPC adversaries, which con-

cerned itself with local, global, and temporal safety.We also outlined

HEAR and its design. HEAR operates on both integers and floats

with variable security. It requires no or little changes in the hard-

ware it is running on. HEAR is either lossless or causes only a

small amount of precision loss. HEAR does not require ciphertext

inflation, which can be introduced to recover precision. We also

discussed how result verification can be supported within HEAR.

We prototyped HEAR in the form of libhear, allowing users to

run it on top of their applications without recompiling. We have

optimized libhear’s performance for two common INC cases: small

latency and large message throughput. We showed that libhear’s
overhead is small in both synthetic and application benchmarks for

the provided security and performance benefits from enabling INC.

Finally, we open-sourced libhear. We believe HEAR represents

the first milestone towards cHPC.

ACKNOWLEDGMENTS
This project received funding from EuroHPC-JU under grant agree-

ment RED-SEA, No 055776, the UrbanTwin project, and a donation

from Intel. We also thank CSCS for providing computational re-

sources for this project. Furthermore, we thank Surendra Anubolu

and Mohan Kalkunte (both Broadcom), Michael Steiner (Intel),

Madlen Koblinger, and Bogdan Ursu for constructive discussions

about this project and assistance in preparing this article.

SC ’23, November 12–17, 2023, Denver, CO, USA Marcin Chrapek, Mikhail Khalilov, and Torsten Hoefler

REFERENCES
[1] Eslam G. AbdAllah, Yu Rang Kuang, and Changcheng Huang. 2020. Advanced

Encryption Standard New Instructions (AES-NI) Analysis: Security, Perfor-

mance, and Power Consumption. In Proceedings of the 2020 12th International
Conference on Computer and Automation Engineering (ICCAE 2020). Associa-

tion for Computing Machinery, New York, NY, USA, (May 16, 2020), 167–172.

isbn: 978-1-4503-7678-5. doi: 10.1145/3384613.3384648.

[2] Dennis Abts, Michael R. Marty, Philip M. Wells, Peter Klausler, and Hong

Liu. 2010. Energy proportional datacenter networks. In Proceedings of the
37th Annual International Symposium on Computer Architecture (ISCA ’10).

Association for Computing Machinery, New York, NY, USA, (June 19, 2010),

338–347. isbn: 978-1-4503-0053-7. doi: 10.1145/1815961.1816004.

[3] Abbas Acar, Hidayet Aksu, A. Selcuk Uluagac, and Mauro Conti. 2018. A

Survey on Homomorphic Encryption Schemes: Theory and Implementation.

ACM Computing Surveys, 51, 4, (July 25, 2018), 79:1–79:35. doi: 10.1145/32143

03.

[4] Kahraman Akdemir, Martin Dixon, Wajdi Feghali, Patrick Fay, Vinodh Gopal,

Jim Guilford, Erdinc Ozturk, Gil Wolrich, and Ronen Zohar. [n. d.] Break-

through AES Performance with Intel® AES New Instructions.

[5] Ayaz Akram, Anna Giannakou, Venkatesh Akella, Jason Lowe-Power, and

Sean Peisert. 2021. Performance Analysis of Scientific Computing Work-

loads on General Purpose TEEs. In 2021 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS). 2021 IEEE International Parallel and

Distributed Processing Symposium (IPDPS). (May 2021), 1066–1076. doi: 10.1

109/IPDPS49936.2021.00115.

[6] Ayaz Akram, Anna Giannakou, Venkatesh Akella, Jason Lowe-Power, and

Sean Peisert. 2021. Performance Analysis of Scientific Computing Workloads

on General Purpose TEEs. In 2021 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). 2021 IEEE International Parallel and Dis-

tributed Processing Symposium (IPDPS). IEEE, Portland, OR, USA, (May 2021),

1066–1076. isbn: 978-1-66544-066-0. doi: 10.1109/IPDPS49936.2021.00115.

[7] Louis J. M. Aslett, Pedro M. Esperança, and Chris C. Holmes. 2015. A review of

homomorphic encryption and software tools for encrypted statistical machine

learning. CoRR, abs/1508.06574. Retrieved Mar. 27, 2023 from http://arxiv.org

/abs/1508.06574 arXiv: 1508.06574.

[8] Tal Ben-Nun and Torsten Hoefler. 2019. Demystifying Parallel and Distributed

Deep Learning: An In-depth Concurrency Analysis. ACM Computing Surveys,
52, 4, (Aug. 30, 2019), 65:1–65:43. doi: 10.1145/3320060.

[9] Josh Benaloh. 1994. Dense probabilistic encryption. In Proceedings of the
Workshop on Selected Areas of Cryptography, 120–128.

[10] David E. Bernholdt, Swen Boehm, George Bosilca, Manjunath Gorentla

Venkata, Ryan E. Grant, Thomas Naughton, Howard P. Pritchard, Martin

Schulz, and Geoffroy R. Vallee. 2020. A survey of MPI usage in the US exascale

computing project. Concurrency and Computation: Practice and Experience, 32,
3, e4851. doi: 10.1002/cpe.4851.

[11] Alex Biryukov and Eyal Kushilevitz. 1998. From differential cryptanalysis

to ciphertext-only attacks. In Advances in Cryptology — CRYPTO ’98 (Lec-

ture Notes in Computer Science). Hugo Krawczyk, (Ed.) Springer, Berlin,

Heidelberg, 72–88. isbn: 978-3-540-68462-6. doi: 10.1007/BFb0055721.

[12] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. 2005. Evaluating 2-DNF Formu-

las on Ciphertexts. In Theory of Cryptography (Lecture Notes in Computer

Science). Joe Kilian, (Ed.) Springer, Berlin, Heidelberg, 325–341. isbn: 978-3-

540-30576-7. doi: 10.1007/978-3-540-30576-7_18.

[13] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2012. (Leveled)

fully homomorphic encryptionwithout bootstrapping. In Proceedings of the 3rd
Innovations in Theoretical Computer Science Conference (ITCS ’12). Association
for Computing Machinery, New York, NY, USA, (Jan. 8, 2012), 309–325. isbn:

978-1-4503-1115-1. doi: 10.1145/2090236.2090262.

[14] Lukas Burkhalter, Anwar Hithnawi, Alexander Viand, Hossein Shafagh, and

Sylvia Ratnasamy. 2020. {TimeCrypt}: Encrypted Data Stream Processing at

Scale with Cryptographic Access Control. In 17th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 20), 835–850. isbn:

978-1-939133-13-7. Retrieved Mar. 21, 2023 from https://www.usenix.org/con

ference/nsdi20/presentation/burkhalter.

[15] Claude Castelluccia, Aldar C-F. Chan, Einar Mykletun, and Gene Tsudik. 2009.

Efficient and provably secure aggregation of encrypted data in wireless sensor

networks.ACM Transactions on Sensor Networks, 5, 3, (June 4, 2009), 20:1–20:36.
doi: 10.1145/1525856.1525858.

[16] Dario Catalano and Dario Fiore. 2013. Practical Homomorphic MACs for

Arithmetic Circuits. In Advances in Cryptology – EUROCRYPT 2013 (Lecture
Notes in Computer Science). Thomas Johansson and Phong Q. Nguyen, (Eds.)

Springer, Berlin, Heidelberg, 336–352. isbn: 978-3-642-38348-9. doi: 10.1007/9

78-3-642-38348-9_21.

[17] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. 2017. Homo-

morphic Encryption for Arithmetic of Approximate Numbers. In Advances in
Cryptology – ASIACRYPT 2017 (Lecture Notes in Computer Science). Tsuyoshi

Takagi and Thomas Peyrin, (Eds.) Springer International Publishing, Cham,

409–437. isbn: 978-3-319-70694-8. doi: 10.1007/978-3-319-70694-8_15.

[18] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.

2016. Faster Fully Homomorphic Encryption: Bootstrapping in Less Than

0.1 Seconds. In Advances in Cryptology – ASIACRYPT 2016 (Lecture Notes in
Computer Science). Jung Hee Cheon and Tsuyoshi Takagi, (Eds.) Springer,

Berlin, Heidelberg, 3–33. isbn: 978-3-662-53887-6. doi: 10.1007/978-3-662-53

887-6_1.

[19] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.

2020. TFHE: Fast Fully Homomorphic Encryption Over the Torus. Journal of
Cryptology, 33, 1, (Jan. 1, 2020), 34–91. doi: 10.1007/s00145-019-09319-x.

[20] M. Cho, U. Finkler, M. Serrano, D. Kung, and H. Hunter. 2019. BlueConnect:

Decomposing all-reduce for deep learning on heterogeneous network hier-

archy. IBM Journal of Research and Development, 63, 6, (Nov. 2019), 1:1–1:11.
doi: 10.1147/JRD.2019.2947013.

[21] Sudheer Chunduri, Scott Parker, Pavan Balaji, Kevin Harms, and Kalyan Ku-

maran. 2018. Characterization of MPI Usage on a Production Supercomputer.

In SC18: International Conference for High Performance Computing, Networking,
Storage and Analysis. SC18: International Conference for High Performance

Computing, Networking, Storage and Analysis. (Nov. 2018), 386–400. doi:

10.1109/SC.2018.00033.

[22] George Coker et al. 2011. Principles of remote attestation. International Journal
of Information Security, 10, 2, (June 1, 2011), 63–81. doi: 10.1007/s10207-011-0
124-7.

[23] Eduardo Lopes Cominetti and Marcos A. Simplicio. 2020. Fast Additive Par-

tially Homomorphic Encryption From the Approximate Common Divisor

Problem. IEEE Transactions on Information Forensics and Security, 15, 2988–
2998. doi: 10.1109/TIFS.2020.2981239.

[24] Anamaria Costache, Nigel P. Smart, Srinivas Vivek, and Adrian Waller. 2017.

Fixed-Point Arithmetic in SHE Schemes. In Selected Areas in Cryptography –
SAC 2016 (Lecture Notes in Computer Science). Roberto Avanzi and Howard

Heys, (Eds.) Springer International Publishing, Cham, 401–422. isbn: 978-3-

319-69453-5. doi: 10.1007/978-3-319-69453-5_22.

[25] Victor Costan and Srinivas Devadas. 2016. Intel SGX explained. IACR Cryptol.
ePrint Arch., 86. http://eprint.iacr.org/2016/086.

[26] Daniele De Sensi, Tiziano De Matteis, Konstantin Taranov, Salvatore Di Giro-

lamo, Tobias Rahn, and Torsten Hoefler. 2022. Noise in the clouds: Influence

of network performance variability on application scalability. Proceedings of
the ACM on Measurement and Analysis of Computing Systems, 6, 3, 1–27.

[27] Daniele De Sensi, Salvatore Di Girolamo, Saleh Ashkboos, Shigang Li, and

Torsten Hoefler. 2021. Flare: flexible in-network allreduce. In Proceedings of
the International Conference for High Performance Computing, Networking,
Storage and Analysis (SC ’21). Association for Computing Machinery, New

York, NY, USA, (Nov. 13, 2021), 1–16. isbn: 978-1-4503-8442-1. doi: 10.1145/34

58817.3476178.

[28] Carl P. Dettmann and Orestis Georgiou. 2009. Product of n independent

uniform random variables. Statistics & Probability Letters, 79, 24, (Dec. 15,
2009), 2501–2503. doi: 10.1016/j.spl.2009.09.004.

[29] P. Drozdowski, N. Buchmann, C. Rathgeb, M. Margraf, and C. Busch. 2019. On

the Application of Homomorphic Encryption to Face Identification. In 2019
International Conference of the Biometrics Special Interest Group (BIOSIG). 2019
International Conference of the Biometrics Special Interest Group (BIOSIG).

(Sept. 2019), 1–5.

[30] Morris Dworkin. 2001. Recommendation for Block CipherModes of Operation:

Methods and Techniques. NIST Special Publication (SP) 800-38A. National

Institute of Standards and Technology, (Dec. 1, 2001). doi: 10.6028/NIST.SP.8

00-38A.

[31] Morris Dworkin, Elaine Barker, James Nechvatal, James Foti, Lawrence

Bassham, E. Roback, and James Dray. 2001. Advanced encryption standard

(AES). Federal Inf. Process. Stds. (NIST FIPS), National Institute of Standards

and Technology, Gaithersburg, MD, (2001). doi: 10.6028/NIST.FIPS.197.

[32] Donald E. Eastlake 3rd and Paul Jones. 2001. US Secure Hash Algorithm 1

(SHA1). Request for Comments RFC 3174. Internet Engineering Task Force,

(Sept. 2001). 22 pp. doi: 10.17487/RFC3174.

[33] T. Elgamal. 1985. A public key cryptosystem and a signature scheme based

on discrete logarithms. IEEE Transactions on Information Theory, 31, 4, (July
1985), 469–472. doi: 10.1109/TIT.1985.1057074.

[34] Junfeng Fan and Frederik Vercauteren. 2012. Somewhat practical fully homo-

morphic encryption. IACR Cryptol. ePrint Arch., 144. http://eprint.iacr.org/201
2/144.

[35] Seyed Hamed Fatemi Langroudi, Tej Pandit, and Dhireesha Kudithipudi. 2018.

Deep Learning Inference on Embedded Devices: Fixed-Point vs Posit. In 2018
1st Workshop on Energy Efficient Machine Learning and Cognitive Computing
for Embedded Applications (EMC2). 2018 1st Workshop on Energy Efficient

Machine Learning and Cognitive Computing for Embedded Applications

(EMC2). (Mar. 2018), 19–23. doi: 10.1109/EMC2.2018.00012.

[36] Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier, and

Paul Zimmermann. 2007. MPFR: A multiple-precision binary floating-point

https://doi.org/10.1145/3384613.3384648
https://doi.org/10.1145/1815961.1816004
https://doi.org/10.1145/3214303
https://doi.org/10.1145/3214303
https://doi.org/10.1109/IPDPS49936.2021.00115
https://doi.org/10.1109/IPDPS49936.2021.00115
https://doi.org/10.1109/IPDPS49936.2021.00115
http://arxiv.org/abs/1508.06574
http://arxiv.org/abs/1508.06574
https://arxiv.org/abs/1508.06574
https://doi.org/10.1145/3320060
https://doi.org/10.1002/cpe.4851
https://doi.org/10.1007/BFb0055721
https://doi.org/10.1007/978-3-540-30576-7_18
https://doi.org/10.1145/2090236.2090262
https://www.usenix.org/conference/nsdi20/presentation/burkhalter
https://www.usenix.org/conference/nsdi20/presentation/burkhalter
https://doi.org/10.1145/1525856.1525858
https://doi.org/10.1007/978-3-642-38348-9_21
https://doi.org/10.1007/978-3-642-38348-9_21
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1147/JRD.2019.2947013
https://doi.org/10.1109/SC.2018.00033
https://doi.org/10.1007/s10207-011-0124-7
https://doi.org/10.1007/s10207-011-0124-7
https://doi.org/10.1109/TIFS.2020.2981239
https://doi.org/10.1007/978-3-319-69453-5_22
http://eprint.iacr.org/2016/086
https://doi.org/10.1145/3458817.3476178
https://doi.org/10.1145/3458817.3476178
https://doi.org/10.1016/j.spl.2009.09.004
https://doi.org/10.6028/NIST.SP.800-38A
https://doi.org/10.6028/NIST.SP.800-38A
https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/10.17487/RFC3174
https://doi.org/10.1109/TIT.1985.1057074
http://eprint.iacr.org/2012/144
http://eprint.iacr.org/2012/144
https://doi.org/10.1109/EMC2.2018.00012

HEAR: Homomorphically Encrypted Allreduce SC ’23, November 12–17, 2023, Denver, CO, USA

library with correct rounding. ACM Transactions on Mathematical Software,
33, 2, (June 1, 2007), 13–es. doi: 10.1145/1236463.1236468.

[37] Edgar Gabriel et al. 2004. Open MPI: Goals, concept, and design of a next

generationMPI implementation. In Proceedings, 11th European PVM/MPI Users’
Group Meeting. Budapest, Hungary, (Sept. 2004), 97–104.

[38] J.-L. Gauvain and Chin-Hui Lee. 1994. Maximum a posteriori estimation for

multivariate Gaussian mixture observations of Markov chains. IEEE Transac-
tions on Speech and Audio Processing, 2, 2, (Apr. 1994), 291–298. doi: 10.1109/8
9.279278.

[39] Craig Gentry, Shai Halevi, and Nigel P. Smart. 2012. Better Bootstrapping

in Fully Homomorphic Encryption. In Public Key Cryptography – PKC 2012
(Lecture Notes in Computer Science). Marc Fischlin, Johannes Buchmann,

and Mark Manulis, (Eds.) Springer, Berlin, Heidelberg, 1–16. isbn: 978-3-642-

30057-8. doi: 10.1007/978-3-642-30057-8_1.

[40] Avi Goldfarb and Catherine Tucker. 2012. Shifts in Privacy Concerns.American
Economic Review, 102, 3, (May 2012), 349–353. doi: 10.1257/aer.102.3.349.

[41] Shafi Goldwasser and Silvio Micali. 1984. Probabilistic encryption. Journal of
Computer and System Sciences, 28, 2, (Apr. 1, 1984), 270–299. doi: 10.1016/002
2-0000(84)90070-9.

[42] Shafi Goldwasser and Silvio Micali. 1982. Probabilistic encryption & how to

play mental poker keeping secret all partial information. In Proceedings of
the Fourteenth Annual ACM Symposium on Theory of Computing (STOC ’82).

Association for Computing Machinery, New York, NY, USA, (May 5, 1982),

365–377. isbn: 978-0-89791-070-5. doi: 10.1145/800070.802212.

[43] Daniel M. Gordon. 1998. A Survey of Fast Exponentiation Methods. Journal
of Algorithms, 27, 1, (Apr. 1, 1998), 129–146. doi: 10.1006/jagm.1997.0913.

[44] S. Gottlieb, W. Liu, D. Toussaint, R. L. Renken, and R. L. Sugar. 1987. Hybrid-

molecular-dynamics algorithms for the numerical simulation of quantum

chromodynamics. Physical Review. D, Particles and Fields, 35, 8, (Apr. 15, 1987),
2531–2542. pmid: 9957958. doi: 10.1103/physrevd.35.2531.

[45] Richard L. Graham et al. 2016. Scalable Hierarchical Aggregation Protocol

(SHArP): A Hardware Architecture for Efficient Data Reduction. In 2016 First
International Workshop on Communication Optimizations in HPC (COMHPC).
2016 First International Workshop on Communication Optimizations in HPC

(COMHPC). (Nov. 2016), 1–10. doi: 10.1109/COMHPC.2016.006.

[46] Torbjrn Granlund and Gmp Development Team. 2015. GNU MP 6.0 Multiple
Precision Arithmetic Library. Samurai Media Limited, London, GBR, (Oct. 2015).

148 pp. isbn: 978-988-8381-96-8.

[47] Yang Guo et al. 2023. High-Performance Computing (HPC) Security: Archi-

tecture, Threat Analysis, and Security Posture. NIST Special Publication (SP)

800-223 (Draft). National Institute of Standards and Technology, (Feb. 6, 2023).

doi: 10.6028/NIST.SP.800-223.ipd.

[48] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan.

2015. Deep Learning with Limited Numerical Precision. In Proceedings of the
32nd International Conference on Machine Learning. International Conference
on Machine Learning. PMLR, (June 1, 2015), 1737–1746. Retrieved Mar. 23,

2023 from https://proceedings.mlr.press/v37/gupta15.html.

[49] John L. Gustafson and Isaac T. Yonemoto. 2017. Beating Floating Point at its

Own Game: Posit Arithmetic. Supercomputing Frontiers and Innovations, 4, 2,
(Apr. 25, 2017), 71–86, 2, (Apr. 25, 2017). doi: 10.14529/jsfi170206.

[50] Torsten Hoefler, Salvatore Di Girolamo, Konstantin Taranov, Ryan E. Grant,

and Ron Brightwell. 2017. sPIN: High-performance streaming Processing In

the Network. In Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (SC ’17). Association

for Computing Machinery, New York, NY, USA, (Nov. 12, 2017), 1–16. isbn:

978-1-4503-5114-0. doi: 10.1145/3126908.3126970.

[51] Torsten Hoefler, Andrew Lumsdaine, and Jack Dongarra. 2009. Towards Effi-

cient MapReduce Using MPI. In Recent Advances in Parallel Virtual Machine
and Message Passing Interface (Lecture Notes in Computer Science). Matti

Ropo, Jan Westerholm, and Jack Dongarra, (Eds.) Springer, Berlin, Heidelberg,

240–249. isbn: 978-3-642-03770-2. doi: 10.1007/978-3-642-03770-2_30.

[52] Torsten Hoefler et al. 2022. HammingMesh: a network topology for large-

scale deep learning. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis (SC ’22). IEEE Press,

Dallas, Texas, (Nov. 18, 2022), 1–18.

[53] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua

Bengio. 2017. Quantized neural networks: training neural networks with low

precision weights and activations. The Journal of Machine Learning Research,
18, 1, (Jan. 1, 2017), 6869–6898.

[54] 2019. IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2019 (Revision
of IEEE 754-2008), (July 2019), 1–84. doi: 10.1109/IEEESTD.2019.8766229.

[55] Yuval Ishai and Anat Paskin. 2007. Evaluating Branching Programs on En-

crypted Data. In Theory of Cryptography (Lecture Notes in Computer Science).

Salil P. Vadhan, (Ed.) Springer, Berlin, Heidelberg, 575–594. isbn: 978-3-540-

70936-7. doi: 10.1007/978-3-540-70936-7_31.

[56] Sambhav R. Jain, Albert Gural, Michael Wu, and Chris Dick. 2020. Trained

quantization thresholds for accurate and efficient fixed-point inference of

deep neural networks. In Proceedings of Machine Learning and Systems 2020,

MLSys 2020, Austin, TX, USA, March 2-4, 2020. Inderjit S. Dhillon, Dimitris S.

Papailiopoulos, and Vivienne Sze, (Eds.) mlsys.org. https://proceedings.mlsys

.org/book/295.pdf.

[57] David Kaplan. [n. d.] AMD SEV-SNP: Strengthening VM Isolation with In-

tegrity Protection and More.

[58] Jonathan Katz and Yehuda Lindell. 2014. Introduction to Modern Cryptography,
Second Edition. (2nd ed.). Chapman & Hall/CRC, (Oct. 2014). 603 pp. isbn:

978-1-4665-7026-9.

[59] N. G. Kingsbury and P. J. W. Rayner. 1971. Digital filtering using logarithmic

arithmetic. Electronics Letters, 7, 2, (Jan. 28, 1971), 56–58. doi: 10.1049/el:1971
0039.

[60] Benjamin Klenk, Nan Jiang, Greg Thorson, and Larry Dennison. 2020. An

in-network architecture for accelerating shared-memory multiprocessor col-

lectives. In Proceedings of the ACM/IEEE 47th Annual International Symposium
on Computer Architecture (ISCA ’20). IEEE Press, Virtual Event, (Sept. 23, 2020),

996–1009. isbn: 978-1-72814-661-4. doi: 10.1109/ISCA45697.2020.00085.

[61] Himanshu Kumar, Sudhanshu Kumar, Remya Joseph, Dhananjay Kumar,

Sunil Kumar Shrinarayan Singh, Ajay Kumar, and Praveen Kumar. 2013.

Rainbow table to crack password using MD5 hashing algorithm. In 2013
IEEE Conference on Information & Communication Technologies. 2013 IEEE

Conference on Information & Communication Technologies. (Apr. 2013), 433–

439. doi: 10.1109/CICT.2013.6558135.

[62] Ignacio Laguna, RyanMarshall, KathrynMohror, Martin Ruefenacht, Anthony

Skjellum, and Nawrin Sultana. 2019. A large-scale study of MPI usage in

open-source HPC applications. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis (SC ’19).

Association for Computing Machinery, New York, NY, USA, (Nov. 17, 2019),

1–14. isbn: 978-1-4503-6229-0. doi: 10.1145/3295500.3356176.

[63] Darryl Lin, Sachin Talathi, and Sreekanth Annapureddy. 2016. Fixed Point

Quantization of Deep Convolutional Networks. In Proceedings of The 33rd
International Conference on Machine Learning. International Conference on
Machine Learning. PMLR, (June 11, 2016), 2849–2858. Retrieved Mar. 23, 2023

from https://proceedings.mlr.press/v48/linb16.html.

[64] Message Passing Interface Forum. 2021. MPI: A Message-Passing Interface
Standard Version 4.0. Manual: (June 2021). https://www.mpi-forum.org/docs

/mpi-4.0/mpi40-report.pdf.

[65] FrankMietke, Robert Rex, Robert Baumgartl, TorstenMehlan, Torsten Hoefler,

and Wolfgang Rehm. 2006. Analysis of the memory registration process in the

Mellanox InfiniBand software stack. In Euro-Par 2006 Parallel Processing: 12th
International Euro-Par Conference, Dresden, Germany, August 28–September 1,
2006. Proceedings 12. Springer, 124–133.

[66] Fan Mo, Zahra Tarkhani, and Hamed Haddadi. 2022. Machine Learning with

Confidential Computing: A Systematization of Knowledge. arXiv.org. (Aug. 22,

2022). Retrieved Aug. 28, 2023 from https://arxiv.org/abs/2208.10134v2.

[67] Dominic P. Mulligan, Gustavo Petri, Nick Spinale, Gareth Stockwell, and

Hugo J. M. Vincent. 2021. Confidential Computing—a brave new world. In

2021 International Symposium on Secure and Private Execution Environment
Design (SEED). 2021 International Symposium on Secure and Private Execution

Environment Design (SEED). (Sept. 2021), 132–138. doi: 10.1109/SEED51797

.2021.00025.

[68] Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. 2011. Can homo-

morphic encryption be practical? In Proceedings of the 3rd ACM Workshop on
Cloud Computing Security Workshop (CCSW ’11). Association for Computing

Machinery, New York, NY, USA, (Oct. 21, 2011), 113–124. isbn: 978-1-4503-

1004-8. doi: 10.1145/2046660.2046682.

[69] Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and

Tijmen Blankevoort. 2020. Up or Down? Adaptive Rounding for Post-Training

Quantization. In Proceedings of the 37th International Conference on Machine
Learning. International Conference on Machine Learning. PMLR, (Nov. 21,

2020), 7197–7206. Retrieved Apr. 6, 2023 from https://proceedings.mlr.press/v

119/nagel20a.html.

[70] Monique Ogburn, Claude Turner, and Pushkar Dahal. 2013. Homomorphic

Encryption. Procedia Computer Science. Complex Adaptive Systems 20, (Jan. 1,

2013), 502–509. doi: 10.1016/j.procs.2013.09.310.

[71] [n. d.] OSU micro-benchmarks 7.1. https://mvapich.cse.ohio-state.edu/bench

marks/.

[72] Pascal Paillier. 1999. Public-Key Cryptosystems Based on Composite Degree

Residuosity Classes. In Advances in Cryptology — EUROCRYPT ’99 (Lecture
Notes in Computer Science). Jacques Stern, (Ed.) Springer, Berlin, Heidelberg,

223–238. isbn: 978-3-540-48910-8. doi: 10.1007/3-540-48910-X_16.

[73] Maria Petrescu and Anjala S. Krishen. 2018. Analyzing the analytics: data

privacy concerns. Journal of Marketing Analytics, 6, 2, (June 1, 2018), 41–43.
doi: 10.1057/s41270-018-0034-x.

[74] Sandro Pinto and Nuno Santos. 2019. Demystifying Arm TrustZone: A Com-

prehensive Survey.ACMComputing Surveys, 51, 6, (Jan. 28, 2019), 130:1–130:36.
doi: 10.1145/3291047.

[75] [n. d.] Piz Daint. CSCS. Retrieved Apr. 4, 2023 from https://www.cscs.ch/com

puters/piz-daint/.

https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1109/89.279278
https://doi.org/10.1109/89.279278
https://doi.org/10.1007/978-3-642-30057-8_1
https://doi.org/10.1257/aer.102.3.349
https://doi.org/10.1016/0022-0000(84)90070-9
https://doi.org/10.1016/0022-0000(84)90070-9
https://doi.org/10.1145/800070.802212
https://doi.org/10.1006/jagm.1997.0913
9957958
https://doi.org/10.1103/physrevd.35.2531
https://doi.org/10.1109/COMHPC.2016.006
https://doi.org/10.6028/NIST.SP.800-223.ipd
https://proceedings.mlr.press/v37/gupta15.html
https://doi.org/10.14529/jsfi170206
https://doi.org/10.1145/3126908.3126970
https://doi.org/10.1007/978-3-642-03770-2_30
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1007/978-3-540-70936-7_31
https://proceedings.mlsys.org/book/295.pdf
https://proceedings.mlsys.org/book/295.pdf
https://doi.org/10.1049/el:19710039
https://doi.org/10.1049/el:19710039
https://doi.org/10.1109/ISCA45697.2020.00085
https://doi.org/10.1109/CICT.2013.6558135
https://doi.org/10.1145/3295500.3356176
https://proceedings.mlr.press/v48/linb16.html
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://arxiv.org/abs/2208.10134v2
https://doi.org/10.1109/SEED51797.2021.00025
https://doi.org/10.1109/SEED51797.2021.00025
https://doi.org/10.1145/2046660.2046682
https://proceedings.mlr.press/v119/nagel20a.html
https://proceedings.mlr.press/v119/nagel20a.html
https://doi.org/10.1016/j.procs.2013.09.310
https://mvapich.cse.ohio-state.edu/benchmarks/
https://mvapich.cse.ohio-state.edu/benchmarks/
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1057/s41270-018-0034-x
https://doi.org/10.1145/3291047
https://www.cscs.ch/computers/piz-daint/
https://www.cscs.ch/computers/piz-daint/

SC ’23, November 12–17, 2023, Denver, CO, USA Marcin Chrapek, Mikhail Khalilov, and Torsten Hoefler

[76] Rolf Rabenseifner. 2004. Optimization of Collective Reduction Operations.

In Computational Science - ICCS 2004 (Lecture Notes in Computer Science).

Marian Bubak, Geert Dick van Albada, Peter M. A. Sloot, and Jack Dongarra,

(Eds.) Springer, Berlin, Heidelberg, 1–9. isbn: 978-3-540-24685-5. doi: 10.1007

/978-3-540-24685-5_1.

[77] Fahmida Y. Rashid. 2020. The rise of confidential computing: Big tech com-

panies are adopting a new security model to protect data while it’s in use -

[News]. IEEE Spectrum, 57, 6, (June 2020), 8–9. doi: 10.1109/MSPEC.2020.9099

920.

[78] R. L. Rivest, A. Shamir, and L. Adleman. 1978. A method for obtaining digital

signatures and public-key cryptosystems. Communications of the ACM, 21, 2,

(Feb. 1, 1978), 120–126. doi: 10.1145/359340.359342.

[79] Benjamin Rothenberger, Konstantin Taranov, Adrian Perrig, and Torsten

Hoefler. 2021. {ReDMArk}: Bypassing {RDMA} Security Mechanisms. In 30th

USENIX Security Symposium (USENIX Security 21), 4277–4292. isbn: 978-1-

939133-24-3. Retrieved Aug. 27, 2023 from https://www.usenix.org/conferenc

e/usenixsecurity21/presentation/rothenberger.

[80] Xiaojun Ruan, Qing Yang, Mohammed I. Alghamdi, Shu Yin, and Xiao Qin.

2012. ES-MPICH2: A Message Passing Interface with Enhanced Security. IEEE
Transactions on Dependable and Secure Computing, 9, 3, (May 2012), 361–374.

doi: 10.1109/TDSC.2012.9.

[81] Mohamed Sabt, Mohammed Achemlal, and Abdelmadjid Bouabdallah. 2015.

Trusted Execution Environment: What It is, and What It is Not. In 2015 IEEE
Trustcom/BigDataSE/ISPA. 2015 IEEE Trustcom/BigDataSE/ISPA. Vol. 1. (Aug.

2015), 57–64. doi: 10.1109/Trustcom.2015.357.

[82] Tim Salimans and Durk P Kingma. 2016. Weight Normalization: A Simple

Reparameterization to Accelerate Training of Deep Neural Networks. In

Advances in Neural Information Processing Systems. Vol. 29. Curran Associates,

Inc. Retrieved Apr. 6, 2023 from https://proceedings.neurips.cc/paper/2016/ha

sh/ed265bc903a5a097f61d3ec064d96d2e-Abstract.html.

[83] T. Sander, A. Young, and Moti Yung. 1999. Non-interactive cryptocomputing

for NC/sup 1/. In 40th Annual Symposium on Foundations of Computer Science
(Cat. No.99CB37039). 40th Annual Symposium on Foundations of Computer

Science (Cat. No.99CB37039). (Oct. 1999), 554–566. doi: 10.1109/SFFCS.1999.8

14630.

[84] Amedeo Sapio et al. 2021. Scaling Distributed Machine Learning with {In-

Network} Aggregation. In 18th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 21), 785–808. isbn: 978-1-939133-21-2.

Retrieved Mar. 27, 2023 from https://www.usenix.org/conference/nsdi21/pres

entation/sapio.

[85] Savvas Savvides, Darshika Khandelwal, and Patrick Eugster. 2020. Effi-

cient confidentiality-preserving data analytics over symmetrically encrypted

datasets. Proceedings of the VLDB Endowment, 13, 8, (Apr. 1, 2020), 1290–1303.
doi: 10.14778/3389133.3389144.

[86] Whit Schonbein, Ryan E. Grant, Matthew G. F. Dosanjh, and Dorian Arnold.

2019. INCA: in-network compute assistance. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis
(SC ’19). Association for Computing Machinery, New York, NY, USA, (Nov. 17,

2019), 1–13. isbn: 978-1-4503-6229-0. doi: 10.1145/3295500.3356153.

[87] Debendra Das Sharma. 2022. Compute Express Link®: An open industry-

standard interconnect enabling heterogeneous data-centric computing. In

2022 IEEE Symposium on High-Performance Interconnects (HOTI). 2022 IEEE
Symposium on High-Performance Interconnects (HOTI). (Aug. 2022), 5–12.

doi: 10.1109/HOTI55740.2022.00017.

[88] Noam Shazeer et al. 2018. Mesh-TensorFlow: deep learning for supercomput-

ers. In Proceedings of the 32nd International Conference on Neural Information
Processing Systems (NIPS’18). Curran Associates Inc., Red Hook, NY, USA,

(Dec. 3, 2018), 10435–10444.

[89] James S. Sims and Nicos Martys. 2004. Simulation of Sheared Suspensions

With a Parallel Implementation of QDPD. Journal of Research of the National
Institute of Standards and Technology, 109, 2, 267–277. pmid: 27366609. doi:

10.6028/jres.109.017.

[90] Evangelos Stromatias, Daniel Neil, Michael Pfeiffer, Francesco Galluppi, Steve

B. Furber, and Shih-Chii Liu. 2015. Robustness of spiking Deep Belief Networks

to noise and reduced bit precision of neuro-inspired hardware platforms.

Frontiers in Neuroscience, 9, 222. pmid: 26217169. doi: 10.3389/fnins.2015.0022

2.

[91] Xiaoqiang Sun, Peng Zhang, Joseph K. Liu, Jianping Yu, and Weixin Xie.

2020. Private Machine Learning Classification Based on Fully Homomorphic

Encryption. IEEE Transactions on Emerging Topics in Computing, 8, 2, (Apr.
2020), 352–364. doi: 10.1109/TETC.2018.2794611.

[92] E.E. Swartzlander and A.G. Alexopoulos. 1975. The Sign/Logarithm Number

System. IEEE Transactions on Computers, C-24, 12, (Dec. 1975), 1238–1242. doi:
10.1109/T-C.1975.224172.

[93] Konstantin Taranov, Benjamin Rothenberger, Adrian Perrig, and Torsten Hoe-

fler. 2020. {sRDMA} – Efficient {NIC-based} Authentication and Encryption for

Remote Direct Memory Access. In 2020 USENIX Annual Technical Conference

(USENIX ATC 20), 691–704. isbn: 978-1-939133-14-4. Retrieved Aug. 27, 2023

from https://www.usenix.org/conference/atc20/presentation/taranov.

[94] The OpenSSL Project. OpenSSL: The Open Source toolkit for SSL/TLS. (Apr.

2003).

[95] Rens van de Schoot et al. 2021. Bayesian statistics and modelling. Nature
Reviews Methods Primers, 1, 1, (Jan. 14, 2021), 1–26, 1, (Jan. 14, 2021). doi:
10.1038/s43586-020-00001-2.

[96] W. Gregory Voss. 2017. European Union Data Privacy Law Reform: General

Data Protection Regulation, Privacy Shield, and the Right to Delisting. (Jan. 5,

2017). Retrieved Mar. 27, 2023 from https://papers.ssrn.com/abstract=2894571.

preprint.

[97] Alexander Wood, Kayvan Najarian, and Delaram Kahrobaei. 2020. Homomor-

phic Encryption for Machine Learning in Medicine and Bioinformatics. ACM
Computing Surveys, 53, 4, (Aug. 25, 2020), 70:1–70:35. doi: 10.1145/3394658.

[98] Xun Yi, Russell Paulet, and Elisa Bertino. 2014. Homomorphic Encryption.

In Homomorphic Encryption and Applications. SpringerBriefs in Computer

Science. Xun Yi, Russell Paulet, and Elisa Bertino, (Eds.) Springer International

Publishing, Cham, 27–46. isbn: 978-3-319-12229-8. doi: 10.1007/978-3-319-12

229-8_2.

[99] Andy B. Yoo, Morris A. Jette, and Mark Grondona. 2003. SLURM: Simple Linux

Utility for Resource Management. In Job Scheduling Strategies for Parallel
Processing (Lecture Notes in Computer Science). Dror Feitelson, Larry Rudolph,

and Uwe Schwiegelshohn, (Eds.) Springer, Berlin, Heidelberg, 44–60. isbn:

978-3-540-39727-4. doi: 10.1007/10968987_3.

[100] Huasha Zhao and John Canny. 2014. Kylix: A Sparse Allreduce for Commodity

Clusters. In 2014 43rd International Conference on Parallel Processing. 2014 43rd
International Conference on Parallel Processing. (Sept. 2014), 273–282. doi:

10.1109/ICPP.2014.36.

[101] Huasha Zhao and John F. Canny. 2013. Sparse Allreduce: Efficient Scalable

Communication for Power-Law Data. CoRR, abs/1312.3020. Retrieved Mar. 27,

2023 from http://arxiv.org/abs/1312.3020 arXiv: 1312.3020.

[102] Xuyang Zhao, Mingyu Li, Erhu Feng, and Yubin Xia. 2022. Towards A Secure

Joint Cloud With Confidential Computing. In 2022 IEEE International Confer-
ence on Joint Cloud Computing (JCC). 2022 IEEE International Conference on

Joint Cloud Computing (JCC). (Aug. 2022), 79–88. doi: 10.1109/JCC56315.202

2.00019.

[103] Jianping Zhu et al. 2020. Enabling Rack-scale Confidential Computing using

Heterogeneous Trusted Execution Environment. In 2020 IEEE Symposium on
Security and Privacy (SP). 2020 IEEE Symposium on Security and Privacy (SP).

(May 2020), 1450–1465. doi: 10.1109/SP40000.2020.00054.

https://doi.org/10.1007/978-3-540-24685-5_1
https://doi.org/10.1007/978-3-540-24685-5_1
https://doi.org/10.1109/MSPEC.2020.9099920
https://doi.org/10.1109/MSPEC.2020.9099920
https://doi.org/10.1145/359340.359342
https://www.usenix.org/conference/usenixsecurity21/presentation/rothenberger
https://www.usenix.org/conference/usenixsecurity21/presentation/rothenberger
https://doi.org/10.1109/TDSC.2012.9
https://doi.org/10.1109/Trustcom.2015.357
https://proceedings.neurips.cc/paper/2016/hash/ed265bc903a5a097f61d3ec064d96d2e-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/ed265bc903a5a097f61d3ec064d96d2e-Abstract.html
https://doi.org/10.1109/SFFCS.1999.814630
https://doi.org/10.1109/SFFCS.1999.814630
https://www.usenix.org/conference/nsdi21/presentation/sapio
https://www.usenix.org/conference/nsdi21/presentation/sapio
https://doi.org/10.14778/3389133.3389144
https://doi.org/10.1145/3295500.3356153
https://doi.org/10.1109/HOTI55740.2022.00017
27366609
https://doi.org/10.6028/jres.109.017
26217169
https://doi.org/10.3389/fnins.2015.00222
https://doi.org/10.3389/fnins.2015.00222
https://doi.org/10.1109/TETC.2018.2794611
https://doi.org/10.1109/T-C.1975.224172
https://www.usenix.org/conference/atc20/presentation/taranov
https://doi.org/10.1038/s43586-020-00001-2
https://papers.ssrn.com/abstract=2894571
https://doi.org/10.1145/3394658
https://doi.org/10.1007/978-3-319-12229-8_2
https://doi.org/10.1007/978-3-319-12229-8_2
https://doi.org/10.1007/10968987_3
https://doi.org/10.1109/ICPP.2014.36
http://arxiv.org/abs/1312.3020
https://arxiv.org/abs/1312.3020
https://doi.org/10.1109/JCC56315.2022.00019
https://doi.org/10.1109/JCC56315.2022.00019
https://doi.org/10.1109/SP40000.2020.00054

Appendix: Artifact Description/Artifact Evaluation

ARTIFACT DOI
10.5281/zenodo.8086366

ARTIFACT IDENTIFICATION
1.1 Abstract
Allreduce is one of the most commonly used collective operations.
Its latency and bandwidth can be improved by offloading the cal-
culations to the network. However, no way exists to conduct such
offloading securely; in state-of-the-art solutions, the data is passed
unprotected into the network. Security is a significant concern
for High-Performance Computing (HPC) applications, but achiev-
ing it while maintaining performance remains challenging. We
present HEAR, the first high-performance system for securing in-
network compute and Allreduce operations based on homomorphic
encryption. HEAR implements carefully designed and modified en-
cryption schemes for the most common Allreduce functions and
leverages communication domain knowledge in MPI programs to
obtain decryption and encryption routines with high performance.
Representing the first step towards achieving confidential HPC,
HEAR operates on integers and floats with little or no hardware
changes. We design, implement, and evaluate HEAR, showing its
minimal overhead in a library called libhear. We evaluate parts
of HEAR for correctness, overhead, scaling, precision loss, and ex-
ample applications. This artifact description outlines the structure
of the artifact, allowing for reproducing the results presented in
the article, how it connects with the main contributions, and what
flows to follow to evaluate it.

1.2 Structure
We split our artifact into two main parts: precision, correctness,
and security evaluation of HEARA1 and latency, throughput, block
size, scaling, and application experiments of its implementation,
libhear A2. Some experiments were run in a distributed fashion
using Slurm running on the Piz Daint supercomputer. The other
experiments can be evaluated locally. All of the experiments were
written in C/C++. This artifact allows for reproducing all of the
obtained results in the article.

1.3 Contributions
We use our experiments to verify the claims connected to the main
contributions of the article. Together with the named related exper-
iments, these are:

(1) Defining a suitable INC and cHPC threat model alongside
HEAR, a novel framework for confidential Allreduce oper-
ations allowing users to choose between performance and
security. Homomorphically based HEAR works on integers
and floats and supports addition, multiplication, and XOR.

A1 We evaluate the correctness of encryption for sum-
mation for floating point and integer schemes.

(2) Defining and discussing the security of a new floating point
HE scheme suitable for HPC usage. Presenting the analysis of

the precision loss against the gained security for the floating
points within the scheme.

A1 We evaluate the relative security loss based on
the probability of guessing the corresponding en-
crypted number in a uniform distribution and the
distribution introduced by HEAR.We also show the
loss of precision for the floats for encrypted summa-
tion.

(3) Designing, implementing, and evaluating HEAR, the first
high-performance Allreduce operation framework based
on MPI stack and datatypes, allowing for confidential in-
network computing.

A2 We evaluate the latency breakdown of HEAR im-
plementation, libhear, the encryption/decryption
throughput using different methods, and the opti-
mal size for the pipelining block.

(4) Open-sourcing HEAR as a library for use with any MPI
standard implementation without recompiling applications.

A2 We evaluate the scaling of the scheme in terms of
the used processes per node (PPN) and the number
of nodes. We also show overheads, for example, ap-
plications using their proxy C++ implementation.

REPRODUCIBILITY OF EXPERIMENTS
We present experiments in categories, each showing the expected
evaluation times in brackets. We used Python 3.7.4 for parsing
the experiment results. seaborn, matplotlib, pandas, and numpy
Python libraries are required. The precision experiments rely on the
GNU MPFR library version 4.1.0. It can be obtained using a pack-
age manager (e.g., sudo apt-get install libmpfr-dev=4.1)
or by downloading the corresponding release (https://www.mpfr.
org/mpfr-4.1.0/). Additionally, the implementation of libhear de-
pends on OpenSSL version 1.1.1. Some experiments depend on MPI.
We used cray-mpich version 7.7.18. For compilation, we relied
on Clang 13.0.1. All experiments requiring MPI and scaling were
run on the Piz Daint supercomputer using the Slurm workload
manager version 20.11.8. Unless otherwise stated, all the resulting
intermediate logs, such as .csv files, are expected to be placed
in tests/results. By default, the output figures are output to
plotting/figures.

2.1 HEAR related experiments A1
To set the environment for HEAR experiments, run the following
command in the root directory of the project:

• make security accuracy correctness (10 min)

Compilation using the provided Makefile will result in the fol-
lowing binaries:

• security;
• accuracy_addition;
• accuracy_multiplication;
• hfloat_correctness;

https://www.mpfr.org/mpfr-4.1.0/
https://www.mpfr.org/mpfr-4.1.0/

Chrapek, et al.

• integer_correctness;

2.1.1 Security evaluation. The security experiment evaluates the
likelihood of an adversary guessing the correct plaintext based on
ciphertext using the maximum a posteriori (MAP) estimator. The ex-
periment iterates through all possible plaintexts and mantissa keys
to evaluate the corresponding likelihoods in parallel on multiple
machines relaying on MPI. Run the base experiment by executing:

• mpirun -n 96 ./security (180 min)

The experiment should be run on 96 cores. This number
can be modified by changing the variable NUM_CORES in
/tests/security/secruity.cpp and recompiling. Each rank out-
puts one log file called mantissas_overall_start_end.csv for
overall unnormalized maximum likelihood in the processed cipher-
texts. To parse the results, execute:

• python3 tests/security/parse.py (5 min)

Parsing entails finding the maximum, minimum, and average likeli-
hoods. The printed likelihoods verify the results claimed in Section
5.3.1.

2.1.2 Loss of information. The loss of information experi-
ments evaluate how much precision is lost when encrypting,
adding/multiplying, and decrypting a series of floating point num-
bers. We evaluate this using a series of summations/products for
encrypted and nonencrypted values and tracking the corresponding
error using an MPFR variable with large precision. Run the experi-
ment by executing:

• ./accuracy_addition -n combined (60 min)
• ./accuracy_mulitplication -n new -t 10000 (30 min)

This will output six .csv files in the tests/accuracy/results
folder which can be parsed by running:

• cd plotting
• python3 accuracy.py (5 min)

Parsing will output a plot named accuracy.pdf, which verifies the
accuracy claimed in Sections 5.3.2 and 5.3.3 of the article together
with Figure 3.

2.1.3 Float correctness. Float correctness shows that by encrypting
and decrypting a number, its value is not lost and differs from the
original number only by a certain precision loss. We evaluated a
large number of encryptions/decryptions using random numbers.
Run the experiment by executing:

• ./hfloat_correctness (10 min)

The resulting printed average error and runtime will verify the
claims from Section 6 about the floating point error.

2.1.4 Integer correctness. Similarly to floats, we verify that encryp-
tion and decryption, together with a summation, do not introduce
any errors for integers. For that, we encrypt a series of numbers,
sum them up, decrypt, and verify that the corresponding result is
correct. Run the experiment by executing:

• ./integer_correctness (10 min)

The program not failing due to assertion errors shows the correct-
ness of encryption and decryption as claimed in Section 6.

2.2 libhear related experiments A2
To set the environment for libhear performance experiments, run
the following command in the root directory of the project:

• bash ./sourceme.sh (10 min)
Execution of this script will result in compiling all the experi-

mental toolchain:
• ./build/lib/libhear_critical_path_baseline.so -
RDTSC performance counters profiling of baseline MPI
library;

• ./build/lib/libhear_critical_path_naive.so -
RDTSC performance counters profiling of naive libhear
implementation;

• ./build/lib/libhear_critical_path_mpool.so -
RDTSC performance counters profiling libhear implemen-
tation optimized for small MPI messages;

• ./build/lib/libhear_mpool_release.so - release build
of libhear optimized for small MPI messages;

• ./build/lib/libhear_release.so - release build of
libhear optimized for large MPI messages;

• ./build/bin/gpt3 - GPT3 DNN model proxy-benchmark;
• ./build/bin/cosmoflow - CosmoFlow DNN model proxy-
benchmark;

• ./build/bin/resnet - ResNet-152 DNN model proxy-
benchmark;

• ./build/bin/dlrm - DLRM DNN model proxy-benchmark;
• ./build/bin/osu_allreduce_int - OSU Allreduce collec-
tive benchmark with MPI_INT datatype;

• ./build/bin/osu_allreduce_float - OSU Allreduce col-
lective benchmark with MPI_FLOAT datatype;

By default, <logs_dir> should be set to
tests/implementation/results where all of the plotting
scripts assume the resulting .csv files to be located. This behavior
can be changed by modifying the plotting scripts.

2.2.1 Encryption throughput. We evaluate the encryption through-
put for integers and floats depending on the used backend. Run the
base experiment by executing in the root folder:

• python3 ./scripts/single_core_encr_tput.py
$(pwd)/build/ <logs_dir> (30 min)

2.2.2 Latency breakdown. We evaluate the latency of Allreduce
for integer summation and how it is influenced by libhear. Run
the base experiment by executing:

• bash ./scripts/batch_critical_path.sh $(pwd)
$(pwd)/build/lib/ <logs_dir> (30 min)

By default, the experiment runs with 2 MPI ranks and 1 rank per
node. The default value can be changed in the script.

2.2.3 Optimal blocksize. We evaluate the optimal pipelining block
size for libhear by evaluating throughput for various block sizes.
Run the base experiment by executing:

• bash ./scripts/batch_block_size.sh $(pwd)
$(pwd)/build/lib/ <logs_dir> (120 min)

By default, the experiment runs with 96 MPI ranks and 48 ranks
per node. The default value can be changed in the script.

HEAR: Homomorphically Encrypted Allreduce

2.2.4 Throughput and latency scaling. We evaluate the throughput
and latency scaling for libhear for integers and floats. Run the
base experiment by executing:

• bash ./scripts/batch_allreduce_<dtype>_scaling.sh
$(pwd) $(pwd)/build/lib/ <logs_dir> (120 min),
<dtype> denotes Allreduce datatype

By default experiment runs the following configurations of <number
of MPI ranks>/<number of nodes>: 2/2, 4/2, 8/2, 24/2, 48/2, 96/2.
The default value can be changed in the script. For a larger number
of nodes, one has to modify the hostfile accordingly to contain
only the required number of nodes, as the ranks are equally spread
out between the nodes.

2.2.5 Example applications. We evaluate the influence of libhear
on evaluation times of example applications. Run the base experi-
ment by executing:

• bash ./scripts/batch_dnns.sh ./build/bin/
./build/lib/ <logs_dir> (120 min)

• bash ./scripts/batch_gpt3.sh ./build/bin/
./build/lib/ <logs_dir> (120 min)

By default batch_dnns.sh runs experiments for DLRM, ResNet,
and CosmoFlow proxy-apps on 16 nodes and 16 MPI ranks per
node. batch_gpt3.sh runs experiments for GPT3 models on 48
nodes and 8 MPI ranks per node. The lower number of nodes is
not possible due to the memory usage of these experiments. The
output provides the results directly. For plotting, convert these to a
.csv format.

2.2.6 Results post-processing. To post-process the resulting logs,
run:

• python3 postprocess_synthetic_perf.py <logs_dir>
(10 min)

Postprocessing script will output the following files in <logs_dir>
directory:

• ./critical_path.csv - CSV table with critical path latency
measurements;

• ./single_core_encr_tput.csv - CSV table with single
core encrytion/decryption throughput measurements;

• ./block_size.csv - CSV table with block size la-
tency/throughput measurements;

• ./allreduce_int_scaling.csv - CSV table Allreducewith
integer datatype latency/throughput measurements;

• ./allreduce_float_scaling.csv - CSV table Allreduce
with float datatype latency/throughput measurements;

2.2.7 Results plotting. To obtain the plots as in the article, run cd
plotting and:

• python3 latency_breakdown.py (5 min) - outputting a
single plot latency_breakdown.pdf verifying the claims
from Section 6 and Figure 4;

• python3 throughput_enc_dec_combined.py (5 min) - pro-
ducing a single plot throughput_one_core_enc_dec.pdf
verifying the claims from Section 6 and Figure 5;

• python3 optimal_blocksize.py (5 min) - resulting in a
single file block_size.pdf verifying the results claimed in
Section 6 Figure 6;

• python3 throughput_scaling.py (5 min) - producing a
single plot throughput_scaling.pdf verifying claims in
Section 7.1 and Figure 7;

• python3 latency_scaling.py (5 min) - producing a single
plot latency_scaling.pdf verifying claims in Section 7.1
and Figure 8;

• python3 dnn_overhead.py (5 min) - producing a single
plot dnn_overhead.pdf verifying claims in Section 7.2 and
Figure 9;

All resulting plots will be placed in plotting/figures.

ARTIFACT DEPENDENCIES REQUIREMENTS
3.1 Artifact Dependencies and Requirements
We provide three ways to evaluate our work:

(1) A QEMU predefined image that allows running a cluster of
bare-metal machines, e.g., on Chameleon Cloud.

(2) A Docker image that can be used for local testing and veri-
fying some experiments.

(3) Scripts for a Slurm cluster.

The hardware should have AES-NI support, and no input datasets
are needed. The exact package versions used in our experiments
in the paper are described in the section “REPRODUCIBILITY OF
EXPERIMENTS" while the evaluation versions can be found below.

3.1.1 QEMU image. We provide a predefined image configured as
an MPI machine that can be scaled freely to form a cluster. The
image should not be used in production due to SSH security issues.
The image is part of the artifact. We also provide it directly in the
Chameleon Cloud interface for ease of evaluation. The image con-
tains all the necessary installed dependencies and the appropriate
compiled code. Because of such a setup, the cluster can be scaled
without major manual effort. We used the TACC cluster for testing
the evaluation and either the Icelake or Haswell nodes. The package
versions used in the evaluation are in the Dockerfile provided as
the second evaluation method.

3.1.2 Docker image. We also provide a Dockerfile that can be built
into an image. The Dockerfile is self-contained and provides all
of the requirements. We used Ubuntu 22.04 with Docker version
20.10.23 to run the Docker image. No special hardware is necessary,
yet some experiments might not work in this setup (experiments
requiring a larger scale).

3.1.3 Slurm cluster. The two previous methods rely on the manual
setting of MPI. We also provide scripts for running the work on
a Slurm cluster, allowing for easier scalability. The dependencies
outlined in the paper and described in the “REPRODUCIBILITY OF
EXPERIMENTS" section must first be preinstalled.

ARTIFACT INSTALLATION DEPLOYMENT
PROCESS
4.1 Artifact Installation and Deployment

Process
4.1.1 QEMU image on Chameleon Cloud (15 minutes).

Chrapek, et al.

(1) Spawn the cluster. First, create a reservation with the neces-
sary number of nodes to do that. For the non-scaling experi-
ments, we recommend 2. Then, go to the instances and spawn
the required number of instances. In the images, please find
the image called hear in the available sources. The image is
also attached to the artifact, which allows for creating it in
the CLI interface. Assign the floating IP address and connect
to one of the instances.

(2) Execute cd homomorphic-mpi/
(3) Create the file hostfile and insert all of the local IP ad-

dresses of the instances separated by newlines.

4.1.2 Docker (15 minutes).

(1) Compile the Docker image by entering the
homomorphic-mpi directory and running docker build
-t hear .. We also provide a ready image in the Docker
hub for your convenience. To use it, run docker pull
spcleth/hear.

(2) If you compiled your container manually, run it using
docker run -it –mount type=bind,src="(𝑝𝑤𝑑)”, 𝑡𝑎𝑟𝑔𝑒𝑡 =

/ /𝑝𝑟𝑜 𝑗𝑒𝑐𝑡/𝑝𝑙𝑜𝑡𝑡𝑖𝑛𝑔/𝑓 𝑖𝑔𝑢𝑟𝑒𝑠ℎ𝑒𝑎𝑟𝑏𝑎𝑠ℎ.𝐼 𝑓 𝑦𝑜𝑢𝑢𝑠𝑒𝑑𝑡ℎ𝑒𝑟𝑒𝑎𝑑𝑦𝑖𝑚𝑎𝑔𝑒,𝑦𝑜𝑢𝑐𝑎𝑛𝑟𝑢𝑛

4.1.3 Slurm cluster (3/4 hours).

(1) Follow the usual installation of the packages outlined within
the paper and the “REPRODUCIBILITY OF EXPERIMENTS"
section. The ready instructions for some environments can
be found in the Dockerfile.

(2) In all of the shell scripts, uncomment commented lines with
srun, and comment mpirun lines out.

(3) In the file postprocess_synthetic_perf.py comment ex-
isting lineswith ranks=[2,4,8,24,48,96] and uncomment
ranks=[2,4,8,18,36,72,144,288,576,1152].

(4) Use sbatch instead of bash to deploy the workloads.

	Abstract
	1 Introduction
	2 Background
	3 Design requirements
	4 Threat model
	5 HEAR design
	5.1 Integer operations
	5.2 Fixed point operations
	5.3 Floating point operations
	5.4 Other operations
	5.5 Result verification

	6 Implementation
	7 Evaluation
	7.1 Scaling benchmarks
	7.2 Performance of DNN training

	8 HEAR Extensions
	9 Challenges and Opportunities
	10 Conclusions
	Acknowledgments
	1.1 Abstract
	1.2 Structure
	1.3 Contributions
	2.1 HEAR related experiments A1
	2.2 libhear related experiments A2
	3.1 Artifact Dependencies and Requirements
	4.1 Artifact Installation and Deployment Process

