Application Optimization with non-blocking
Collective Operations
— A case study with a three-dimensional FFT —

Torsten HO er

Department of Computer Science
Indiana University / Technical University of Chemnitz

Commissariat a I'Energie Atomique
Direction des applications militaires (CEA-DAM)
Bruyéres-le-chatel, France
12th January 2007

Outline

@ Non-blocking Collective Operations
@ General Thoughts
@ Overlap
@ Process Skew

e General Application Optimization
@ Introduction
@ An independent data Algorithm
@ An independent data Loop

e Use case: A specialized 3D-FFT
@ A parallel 3D-FFT
@ Applying non-blocking Collectives

@ Conclusions and Future Work

Non-blocking Collective Operations

Outline

@ Non-blocking Collective Operations

Non-blocking Collective Operations
[le]

General Thoughts

What is it?

Non-blocking Send/Recv

@ MPI_Isend/MPI_Irecv + MPI_Test/MPI_Wait
@ avoid deadlock situations and enable overlap

Collective Operations

@ MPI_Bcast/MPI_Reduce/...

@ often-used comm. patterns and performance portability
@ | cf. BLAS for communication

\

Non-blocking Collective Operations

@ MPI_Ibcast/MPI_lIreduce/... + MPI_Test/MPI_Wait
@ combines all advantages
@ overlap + performance portability

Non-blocking Collective Operations
oe

General Thoughts

What is it?

Where do | nd it in the Standard?
@ not part of MPI-2
@ explicit programming model (threads)) not viable
@ implemented as an addition to MPI-2

Non-blocking Collective Operations
oe

General Thoughts

What is it?

Where do | nd it in the Standard?

@ not part of MPI-2
@ explicit programming model (threads)) not viable
@ implemented as an addition to MPI-2

4

Why should | invest the additional effort?

@ two main advantages:
© hide communication latency
@ lower the effects of process skew
(introduced by OS noise or the algorithm)

\

Non-blocking Collective Operations
[le]

Overlap

What is overlap and how does it help?

Hardware Parallelism
@ today's computers communicate without CPU involvement
@ communication in the background, CPU is freed

Non-blocking Collective Operations
[le]

Overlap

What is overlap and how does it help?

Hardware Parallelism

@ today's computers communicate without CPU involvement
@ communication in the background, CPU is freed

4

Ah, my program runs faster!?

@ not much - “blocking communication” blocks the CPU :-(
@ CPU waits until the communication is nished
@ non-blocking communication gives control to the user

\

Non-blocking Collective Operations
[le]

Overlap

What is overlap and how does it help?

Hardware Parallelism

@ today's computers communicate without CPU involvement
@ communication in the background, CPU is freed

4

Ah, my program runs faster!?

@ not much - “blocking communication” blocks the CPU :-(
@ CPU waits until the communication is nished

@ non-blocking communication gives control to the user

\

But | heard that non-blocking Send/Recv is slow

@ depends on the MPI library

@ some are implemented badly
(e.g. operation is performed blocking during MPI_Wait)

Non-blocking Collective Operations
o]]

Overlap

What can | gain with overlap?

The Latency of Collective Operations
@ often implemented on top of point-to-point messages
@ scales logarithmic O(log,P) or linear O(P) in P

Non-blocking Collective Operations
o]]

Overlap

What can | gain with overlap?

The Latency of Collective Operations

@ often implemented on top of point-to-point messages
@ scales logarithmic O(log,P) or linear O(P) in P

4

Ok, how much is that?

@ simple network model (Hockney) with 1 byte messages
@ time to send from hosti to hostj (j 6 i): L

@ L is network dependent:

@ Fast Ethernet: L= 50 60 s
@ Gigabit Ethernet: L= 15 20 s
@ InnBand™:L=2 7 s

) 1 s 4000 FLOP of a 2GHz Machine

\

Non-blocking Collective Operations
@000

Process Skew

Process Skew

@ caused by OS interference or unbalanced application
@ especially if processors are overloaded

@ worse for big systems

@ can cause dramatic performance decrease

@ all nodes wait for the last

Non-blocking Collective Operations
@000

Process Skew

Process Skew

@ caused by OS interference or unbalanced application
@ especially if processors are overloaded

@ worse for big systems

@ can cause dramatic performance decrease

@ all nodes wait for the last

Petrini et. al. (2003) "The Case of the Missing Supercomputer
Performance: Achieving Optimal Performance on the 8,192
Processors of ASCI Q”

Non-blocking Collective Operations
[o] le]e}

Process Skew

Process Skew - MPI_BCAST Example - Jumpshot

process 0 delayed, black=calculation time, blue=MPI time

processes

time—»

Non-blocking Collective Operations
[e]e] e}

Process Skew

Process Skew - MPI_IBCAST Example - Jumpshot

process 0 delayed, black=calculation time, blue=MPI time

processes

time—»

Non-blocking Collective Operations
[e]ele]]

Process Skew

Great! How do | use it?

Proposal & Interface De nition

Hoe er et. al. (2006): “Non-Blocking Collective Operations for
MPI-2"

Non-blocking Collective Operations
[e]ele]]

Process Skew

Great! How do | use it?

Proposal & Interface De nition

Hoe er et. al. (2006): “Non-Blocking Collective Operations for
MPI-2"

Implementation - LibNBC
@ needs only ANSI C + MPI-1
@ BSD License
@ download from http://www.unix er.d e/NBC

LibNBC Usage

NBC lIbcast(bufl , p, MPIL_INT, 0, comm, &req);
NBC_Wait(&req);

\

General Application Optimization

Outline

9 General Application Optimization

General Application Optimization
[Je]

Introduction

Acknowledgements

| want to thank some inspiring people!
(alphabetically)

George Bosilca, University of Tennessee (LibNBC)

Peter Gottschling, Indiana University (3D-CG Solver, Apps)
Andrew Lumsdaine, Indiana University (LibNBC, Apps)
Wolfgang Rehm, TU Chemnitz (LibNBC, Apps)

Jeff Squyres, Cisco Systems (LibNBC)

Gilles Zerah, CEA-DAM France (problem of 3D-FFT)

General Application Optimization
oe

Introduction

(incomplete) Classi cation of parallel Algorithms

Independent Data Applications
@ 3D-CG Poisson solver (inner and halo parts)
@ many implicit iterative solvers (inner and halo parts)

General Application Optimization
oe

Introduction

(incomplete) Classi cation of parallel Algorithms

Independent Data Applications

@ 3D-CG Poisson solver (inner and halo parts)
@ many implicit iterative solvers (inner and halo parts)

Independent Data in Loops

@ parallel compression (blocks independent)
@ multi-dimensional FFT (lines/planes independent)

\

General Application Optimization
oe

Introduction

(incomplete) Classi cation of parallel Algorithms

Independent Data Applications

@ 3D-CG Poisson solver (inner and halo parts)
@ many implicit iterative solvers (inner and halo parts)

Independent Data in Loops

@ parallel compression (blocks independent)
@ multi-dimensional FFT (lines/planes independent)

\

Dependent Data in Loops

@ parallel Gauss Method (HPL, panel broadcast)
@ parallel Cholesky (strong data dependency)

General Application Optimization
L o]

An independent data Algorithm

3D Poisson Solver

PO P1 P2 P3
P4 P5 P6 p7
P8 P9 P10 P11

[J Process-local data’”! 2D Domain
[J Halo-data

General Application Optimization
(o] J

An independent data Algorithm

Speedup

3D-Poisson - Parallel Speedup (Best Case)

L Eth blocking - L
100 Eth non-blocking & o 100
80 80
| x S
60 - B 60
B s g
40 e w40
. S
20 |- 20
3
ol

8 16 24 32 40 48 56 64 72 80 88 96
Number of CPUs

IB blocking —+—
IB non-blocking -3¢

L~

0
8 16 24 32 40 48 56 64 72 80 88 96

Number of CPUs

@ “odin"@IU: 128 2 GHz dual Opteron 246 nodes

@ Interconnect: Gigabit Ethernet, In

niBand ™

@ System size 800x800x800 (1 node 5300s)

General Application Optimization
000

An independent data Loop

Parallel Compression

@ block-by-block parallel compression

@ gather compressed data to a single node

@ compression could also be post-processing
@ widely used to record experimental data

for(i=0; i < my_blocks; i++) {
compress_block(i);

}

MPI_Gather(<block 0 to my_blocks-1 >);

General Application Optimization
(o] le}

An independent data Loop

Pipelined Communication

@ start non-blocking communication after some data is ready
@ two parameters:

© tile-factor: number of elements per communication
@ window-size: number of outstanding requests

for(i=0; i < my_blocksltile; i++) |
for(j=0; j o< tile; j+t)

compress_block(i*tile +)
MPI_Igather(<block i to i+tile-1 >);
}

MPI_Waitall(<lIgather requests >);

General Application Optimization
[e]e]]

An independent data Loop

Compression - Parallel Speedup (Best Case)

90 T 90

MPl/blocking MPI/blocking P
80 f NBC/pipe - 80 NBC/pipe - - 4
NBCltile -) NBCltile - - A
70 NBC/wintile e 70 NBC/wintile e
60 - 60 Ry
3 50 2 50 e
9 2 2 B
o 40 o S g
30 — 30 ;//
20 A 20
10 b P 10 b
L -
0 0
0O 10 20 30 40 50 60 70 80 90 100 0O 10 20 30 40 50 60 70 80 90 100
Processors # Processors

@ “odin"@IU: 128 2 GHz dual Opteron 246 nodes
@ Interconnect: Gigabit Ethernet, In niBand ™
@ System size 57.22 MB (1 node 9800s)

Use case: A specialized 3D-FFT

Outline

e Use case: A specialized 3D-FFT

Use case: A specialized 3D-FFT
@®00000000

A parallel 3D-FFT

Domain Decomposition

Discretized 3D Domain (FFT-Box)

Use case: A specialized 3D-FFT

A parallel 3D-FFT

Domain Decomposition

Memory layout (3x3x3 box)
(coordinates xyz: 000! 222)

000|001|/002|010(011|012| -~
-1020/021|022/100|101,102| - -
-1110/1111|112|120|121|122| -+
1200/201|202/ 210|211, 212| -~
1220\ 221|222

Use case: A specialized 3D-FFT
00®000000

A parallel 3D-FFT

Domain Decomposition

Distributed 3D Domain

&

y

Use case: A specialized 3D-FFT
[e]e]e] lelelele]e)

A parallel 3D-FFT

Domain Decomposition

Blocked data distribution

100/101/102] - -
+++/110[111]112[120|121[122] -+

i

Use case: A specialized 3D-FFT
000080000

A parallel 3D-FFT

1D Transformation

1D Transformation in z Direction

y 4

y

Use case: A specialized 3D-FFT
[e]e]elele] lelele)

A parallel 3D-FFT

Rearrange Data Layout

rearrange from xyz to xzy (simply swap y and z indices)

— AN

--+[110[111[112]120]121|122|..- --+[101][111][121]102|112[122].-.

i e

Use case: A specialized 3D-FFT
000000000

A parallel 3D-FFT

1D Transformation

1D Transformation in y Direction

p i

y

Use case: A specialized 3D-FFT
000000080

A parallel 3D-FFT

Rearrange Data Layout

rearrange from xzy to yzx (parallel transpose)
) MPI_Alltoall(v)

0[110[120]--- 001[101[201] - --
--+/101[111]121 112 : 111[211|021]121[221] .-

Use case: A specialized 3D-FFT
000000008

A parallel 3D-FFT

1D Transformation

1D Transformation in x Direction

Use case: A specialized 3D-FFT
@®000000000000

Applying non-blocking Collectives

Non-blocking 3D-FFT

Derivation from “normal” implementation
@ distribution identical to “normal” 3D-FFT
@ rst FFT in z direction and index-swap identical

Use case: A specialized 3D-FFT
@®000000000000

Applying non-blocking Collectives

Non-blocking 3D-FFT

Derivation from “normal” implementation
@ distribution identical to “normal” 3D-FFT
@ rst FFT in z direction and index-swap identical

4

Design Goals to Minimize Communication Overhead

@ start communication as early as possible
@ achieve maximum overlap time

\

Use case: A specialized 3D-FFT
@®000000000000

Applying non-blocking Collectives

Non-blocking 3D-FFT

Derivation from “normal” implementation
@ distribution identical to “normal” 3D-FFT
@ rst FFT in z direction and index-swap identical

4

Design Goals to Minimize Communication Overhead

@ start communication as early as possible
@ achieve maximum overlap time

@ start MPI_lalltoall as soon as rst xz-plane is ready
@ calculate next xz-plane

@ start next communication accordingly ...

@ collect multiple xz-planes (tile factor)

Use case: A specialized 3D-FFT
0®00000000000

Applying non-blocking Collectives

Transformation in z Direction

Data already transformed in y direction

y X
1 block = 1 double value (3x3x3 grid)

Use case: A specialized 3D-FFT
0080000000000

Applying non-blocking Collectives

Transformation in z Direction

Transform rst xz plane in z direction

y X

pattern means that data was transformed in y and z direction

Use case: A specialized 3D-FFT
0008000000000

Applying non-blocking Collectives

Transformation z Direction

start MPI_lalltoall of rst xz plane and transform second plane

y X

cyan color means that data is communicated in the background

Use case: A specialized 3D-FFT
0000800000000

Applying non-blocking Collectives

Transformation in z Direction

start MPI_lalltoall of second xz plane and transform third plane

y X

data of two planes is not accessible due to communication

Use case: A specialized 3D-FFT
0000080000000

Applying non-blocking Collectives

Transformation in x Direction

start communication of the third plane and ...

y X

we need the rst xz plane to goon ...

Use case: A specialized 3D-FFT
0000008000000

Applying non-blocking Collectives

Transformation in x Direction

... S0 MPI_Wait for the rst MPI_lalltoall!

y X

and transform rst plane (new pattern means xyz transformed)

Use case: A specialized 3D-FFT
0000000800000

Applying non-blocking Collectives

Transformation in x Direction

Wait and transform second xz plane

y X

rst plane's data could be accessed for next operation

Use case: A specialized 3D-FFT
0000000080000

Applying non-blocking Collectives

Transformation in x Direction

wait and transform last xz plane

y X

done! ! 1 complete 1D-FFT overlaps a communication

Use case: A specialized 3D-FFT
0000000008000

Applying non-blocking Collectives

Performance Tuning - Parameters

@ number of z-planes to gather before MPI_lalltoall is started
@ very performance critical!
@ not easily predictable

Use case: A specialized 3D-FFT
0000000008000

Applying non-blocking Collectives

Performance Tuning - Parameters

Tile factor

@ number of z-planes to gather before MPI_lalltoall is started
@ very performance critical!
@ not easily predictable

Window size

@ number of outstanding communications
@ not implemented yet

@ not very performance critical ! ne-tuning

\

Use case: A specialized 3D-FFT
0000000008000

Applying non-blocking Collectives

Performance Tuning - Parameters

Tile factor

@ number of z-planes to gather before MPI_lalltoall is started
@ very performance critical!
@ not easily predictable

Window size
@ number of outstanding communications
@ not implemented yet

@ not very performance critical ! ne-tuning

4

MPI_Test interval

@ progresses internal state and outstanding operations
@ unneccessary in threaded NBC implementation (future)

Use case: A specialized 3D-FFT
0000000000800

Applying non-blocking Collectives

3D-FFT Benchmark Results (small input)

35 —— T 50

ideal NBC ——
NBC —— = 45 FMPl
30 MPI &
g 0
25 g 3
=3 2 30
S 20 3
g yd §
g2 15 £ 50
S
c
. 15 :
° / é 10
5 8 /7/,,//
/ R
0 0
0 5 0 15 20 25 30 35 0 5 0 15 20 25 30 35

Nodes Nodes

9@ “tantale”@CEA: 128 2 GHz quad Opteron 844 nodes
@ Interconnect: In niBand ™
@ System size 128x128x128 (1 node 0.755s)

Use case: A specialized 3D-FFT
0000000000080

Applying non-blocking Collectives

3D-FFT Benchmark Results (large input) - In niBand

200

ideal

32

NBC single -
180 - NBC single —— < 30 ~ MPIsingle
160 L MPIsingle - S og L NBCdual —x
NBC dual - E] MPI dual /=
140 | MPI dual & o 26
g2 120 : 24
=] (e}
g 100 c 22 :
o 2 —
n 80 S 20 -
60 i S 18
o £
40 > E 16 / o
20 O 14
y
0 12
0O 20 40 60 80 100 120 140 160 180 200 0O 20 40 60 80 100 120 140 160 180 200
Nodes Nodes

@ “odin"@IU: 128 2 GHz dual Opteron 246 nodes
@ Interconnect: In niBand ™

@ System size 512x512x512 (1 node 50s)

Use case: A specialized 3D-FFT
00000000000 0e

Applying non-blocking Collectives

3D-FFT Benchmark Results (large input) - Ethernet

200

100

ideal

NBC si‘ngle‘
180 - NBC single —— < 90| MPIsingle — . a
160 L MPIsingle - S NBC dual ——x
NBC dual - = 80 - MPI dual “ @
140 | MPI dual & o
g 120 g 70 5
=1 o .
g 100 . c 60
<] .
=% = £4 % *
@ 80 8 s0 v
60 5 *
E 40 T —
40 - g /
20 - - “ o O 30 ¥
0 20
0O 20 40 60 80 100 120 140 160 180 200 0O 20 40 60 80 100 120 140 160 180 200
Nodes Nodes

@ “odin"@IU: 128 2 GHz dual Opteron 246 nodes
@ Interconnect: Gigabit Ethernet
@ System size 512x512x512 (1 node 50s)

Conclusions and Future

Outline

@ Conclusions and Future Work

Conclusions and Future

Conclusions & Future Work

@ applying NBC requires some effort
@ NBC improves scaling
@ common application patterns exist

Conclusions and Future

Conclusions & Future Work

@ applying NBC requires some effort
@ NBC improves scaling
@ common application patterns exist

tune FFT further (cache issues)
automatic parameter assessment (?)
parallel model for LibNBC

LibNBC features (e.g. Fortran bindings)

Conclusions and Future

Discussion

THE END

try LIbNBC: http://www.uni xer. de/ NBC

Thank you for your attention!

