
HOT: Higher-Order Dynamic Graph Representation Learning
with Efficient Transformers

Maciej Besta1∗ Afonso Claudino Catarino1∗ Lukas Gianinazzi1 Nils Blach1

Piotr Nyczyk2 Hubert Niewiadomski2 Torsten Hoefler1

1Department of Computer Science, ETH Zurich; 2Cledar

Abstract
Many graph representation learning (GRL) problems are dynamic, with millions
of edges added or removed per second. A fundamental workload in this setting
is dynamic link prediction: using a history of graph updates to predict whether a
given pair of vertices will become connected. Recent schemes for link predic-
tion in such dynamic settings employ Transformers, modeling individual graph
updates as single tokens. In this work, we propose HOT: a model that enhances
this line of works by harnessing higher-order (HO) graph structures; specifically,
k-hop neighbors and more general subgraphs containing a given pair of vertices.
Harnessing such HO structures by encoding them into the attention matrix of the
underlying Transformer results in higher accuracy of link prediction outcomes,
but at the expense of increased memory pressure. To alleviate this, we resort to
a recent class of schemes that impose hierarchy on the attention matrix, signifi-
cantly reducing memory footprint. The final design offers a sweetspot between
high accuracy and low memory utilization. HOT outperforms other dynamic
GRL schemes, for example achieving 9%, 7%, and 15% higher accuracy than –
respectively – DyGFormer, TGN, and GraphMixer, for the MOOC dataset. Our
design can be seamlessly extended towards other dynamic GRL workloads.

1 Introduction
Analyzing graphs in a dynamic setting, where edges and vertices can be arbitrarily modified, has
become an important task. For example, the Twitter social network may experience even 500 million
new tweets in a single day, while retail transaction graphs consisting of billions of transactions are
generated every year [3]. Other domains where dynamic networks are often used are transportation [8,
51, 126, 131, 132], physical systems [59, 87, 96], scientific collaboration [22, 24, 65, 100, 129], and
others [2, 42, 71, 74, 101, 133, 135, 138]. A fundamental task in such a dynamic graph setting is
predicting links that would appear in the future, based on the history of previous graph modifications.
This task is crucial for understanding the future of the graph datasets, which enables more accurate
graph analytics in real-time in production settings such as recommendation systems in online stores.
Moreover, it enables better performance decisions, for example by adjusting load balancing strategies
with the knowledge of future events [15, 16, 95].

Recent years brought intense developments into harnessing graph representation learning (GRL)
techniques for the above-described tasks [65], resulting in a broad domain called dynamic graph
representation learning (DGRL) [9, 55, 66, 99, 100, 129]. Initially, various approaches have been
proposed based on Temporal Random Walks [63, 120], Sequential Models [36, 116], Memory
Networks [27, 103], or the Dynamic Graph Neural Networks (GNNs) paradigm, in which node
embeddings are iteratively updated based on the information passed by their neighbors [34, 81,
92, 110, 118, 127], while considering temporal data from the past [92, 127]. However, the most
recent and powerful schemes such as DyGFormer [134] instead directly harness the Transformer
model [111] for the DGRL tasks. The intuition is that dynamic graphs can be modeled as a sequence
of updates over time [134], and they could hence benefit from Transformers by treating these updates
as individual tokens. This enhanced predictions for dynamic graphs [134].

∗First-author contribution

M. Besta et al., HOT: Higher-Order Dynamic Graph Representation Learning with Efficient Transformers.
Proceedings of the Second Learning on Graphs Conference (LoG 2023), PMLR 231, Virtual Event, November
27–30, 2023.

HOT: Higher-Order Dynamic Graph Representation Learning with Efficient Transformers

In parallel to the developments in DGRL, many GRL schemes have harnessed higher-order (HO)
graph structure [1, 11, 25, 25, 45, 46, 77, 108, 128]. Fundamentally, they harness relationships
between vertices that go beyond simple edges, for example triangles. Incorporating HO graph
structures results in fundamentally more powerful predictions for many workloads [83]. This line of
works, however, has primarily focused on static GRL.

In this work, we embrace the HO graph structures for higher accuracy in DGRL (contribution #1).
For this, we harness two powerful HO structures: k-hop neighbors and more general subgraphs
containing a given pair of vertices. We harness these structures by encoding them appropriately
into the attention matrix of the underlying Transformer. This results in higher accuracy of link
prediction. However, harnessing HO leads to substantially larger memory utilization, which limits its
applicability. This is because, intuitively, to make a prediction in the temporal setting, one needs to
consider the history of past updates. As HO increases the number of graph elements to be considered
in such a history, the number of entities to be used is substantially inflated. For example, when
relying on the Transformer architecture (as in DyGFormer), the number of tokens that must be used is
significantly increased when incorporating HO. For example, when incorporating x 2-hop neighbors
for each vertex, the token count increases by a factor of x. This becomes even higher for k > 2 and
more complex HO structures such as triangles. Hence, one needs to decrease the considered length of
the history of updates to make the computation feasible. But then, considering shorter history entails
lower accuracy, effectively annihilating benefits gained from using HO in the first place.

We tackle this by harnessing the state of the art outcomes from the world of Transformers
(contribution #2), where one imposes hierarchy into the traditionally “flat” attention matrix. Ex-
amples of such recent hierarchical Transformer models are RWKV [86], Swin Transformer [78],
hierarchical BERT [84], Nested Hierarchical Transformer [140], Hift [32], or Block-Recurrent Trans-
former [60]. We employ these designs to alleviate the memory requirements of the attention matrix
by dividing it into parts, computing attention locally within each part, and then using such blocks
to obtain the final outcomes. For concreteness, we pick Block-Recurrent Transformer [60], but
our approach can be used with others. Our final outcome, a model called HOT, supported by a
theoretical analysis (contribution #3), ensures long-range and high-accuracy dynamic link prediction.
It outperforms all other dynamic GRL schemes (contribution #4), for example achieving 9%, 7%,
and 15% higher accuracy than – respectively – DyGFormer, TGN, and GraphMixer, on the MOOC
dataset. Our work illustrates the importance of HO structures in the temporal dimension.

2 Background
Static graphs are usually modeled as a tuple G = (V,E, f, w), where V is the set of nodes, E ⊆ V×V
is the set of edges, f : V → RdN are the node features and w : E → RdE are the edge features.
Dynamic graphs are more complex to represent, as it is necessary to capture their evolution over
time. In this work, we focus on the commonly used Continuous-Time Dynamic Graph (CTDG)
representation [34, 36, 63, 71, 79, 81, 92, 110, 116, 118, 120, 127]. A CTDG is a tuple (G(0), T),
where G(0) = (V (0), E(0), f (0), w(0)) represents the initial state of the graph and T is a set of tuples
of the form (timestamp, event) representing events to be applied to the graph at given timestamps.
These events could be node additions/deletions, edge additions/deletions, or feature updates.

Assume a CTDG (G(0), T), a timestamp t ∈ N, and an edge (u, v). In dynamic link prediction, the
task is to decide, whether there is some event e pertaining to (u, v), such that (t, e) ∈ { (t′, e) ∈ T |
t′ = t }, while only considering the CTDG (G(0), { (t′, e) ∈ T | t′ < t }). This problem is usually
considered in two settings, the transductive setting (predicting links between nodes that were seen
during training) and the inductive setting (predicting links between nodes not seen during training).

Transformer [111] harnesses the multi-head attention mechanism in order to overcome the inherent
sequential design of recurrent neural networks (RNNs) [7, 29, 105]. Transformer has been effectively
applied to different ML tasks, including but not limited to image recognition and time-series fore-
casting [41, 76]. It has also laid the ground for many recent advances in generative AI [31, 89]. We
focus on the encoder-only architecture, following past DGRL works [134]. Let x = (x1, . . .xn) be
a sequence of n d-dimensional inputs xi ∈ Rd. We consider the input matrix X ∈ Rn×d, a single
input token is represented as an individual row in X . Transformer details are in Appendix A.

The runtime of Transformer increases quadratically with the length of the input sequence. As such,
many efforts have been made to make it more efficient [12, 37, 38, 90, 122]. Some of these efforts
culminated in the Block-Recurrent Transformer [60], a model which tries to bring together the
advantages of Transformers and LSTMs [57], a special kind of RNN. As this is one of the principal
building blocks of our model, we will briefly describe its architecture in the following.

2

HOT: Higher-Order Dynamic Graph Representation Learning with Efficient Transformers

The Block-Recurrent Transformer is essentially an extension of the Transformer-XL model [37] and
the sliding-window attention [12] mechanism. Long input sequences are divided into segments of
size S, and further divided into blocks of size B. Following the sliding-window attention mechanism,
instead of applying attention to the whole sequence, the Block-Recurrent Transformer applies it on
each block individually. The elements of each block may attend to recurrently computed state vectors
as well. With B state vectors, we get attention matrices of size B × 2B. As B is constant, the cost
of applying attention on each block is linear with respect to the segment size. This improves on the
aforementioned quadratic runtime of the vanilla Transformer. More BRT details are in Appendix A.
Temporal Higher-Order (HO) Example

?

yes /
/ no

Extract 1-hop ... k-hop
relationships & find HO
interactions between u, v

3.1

3.2
Patching,
alignment,

concatenation

3.4

Overview of Model Architecture

Block
Recurrent

Transformer

time

A triangle
appearing at a
certain time

A temporal triangle,
only visible in the
time dimension

In various datasets, such as social networks,
a triangle appearing among the neighbors of
two vertices makes it probable that these two
vertices will become connected in the future

Will vertices
u and v be
connected?

The harnessed
DyGFormer

model

Higher-order (HO)
structures that vertices
u, v are both a part of

green:
added edge

3.5

Average
pooling Decoder

red
(dashed):
removed

edge

1-hop
related

HO
related

Encode
higher-order

neighbor interactions

3.3

Construct
input feature

matrices
?

Figure 1: Illustration of a temporal higher-order example and an overview of the HOT model.

3 The HOT Model
We now present the design of HOT, see Figure 1. The key idea behind HOT is to harness the HO
graph structures within the temporal dimension, and combine them with an efficient Transformer
design applied to the temporal dimension modeled with tokens. For this, we extend the template
design proposed by the DyGLib library [134] that was provided as a setting where DyGFormer
is implemented; it offers structured training and evaluation pipelines for dynamic link prediction.
We extend DyGLib and its DyGFormer design with the ability to harness HO and the hierarchical
Transformers; we pick the Block-Recurrent Transformer (BRT) as a specific design of choice.

Overall, HOT computes node representations within its encoder module; these representations are
then leveraged to solve the downstream link prediction tasks using a suitable decoder. Let u, v
be nodes in some CTDG and t a timestamp. Given this, the model first extracts and appropriately
encodes the higher-order neighbors of each vertex (Section 3.1), followed by constructing input
feature matrices (Section 3.2). Then, the input matrices are augmented by encoding the selected HO
interactions (Section 3.3). After that, certain adjustments are made, such as passing the matrices via
MLPs (Section 3.4), followed by plugging in BRT (Section 3.5).

3.1 Extracting Higher-Order Neighbors
The model relies on the historical 1-hop and 2-hop interactions of the nodes u and v before t to
make its predictions. The set of 1-hop interactions of a vertex u contains all tuples (u, u′, t′) for
which there is an interaction between nodes u and u′ at timestamp t′ < t. To enable a trade-off
between memory consumption and accuracy, we only add the s1 most recent interactions from the
set of 1-hop interactions to the list of considered interactions Su for u. Then, we form the set of
2-hop interactions. For each 1-hop interaction tuple (u, u′, t′) in Su, we consider the interactions
(u′, u′′, t′′) with t′′ < t. We add (u, u′′, t′′) for the s2 most recent such interactions to the list of
interactions Su. This scheme is further generalized to arbitrary k-hop neighbourhoods by iterating
the construction processes. In our experiments, we focus on 1-hop and 2-hop neighborhoods.

3

HOT: Higher-Order Dynamic Graph Representation Learning with Efficient Transformers

The parameters s1 and s2 (and any other sk if one uses k > 2) introduce a tradeoff between accuracy
vs. preprocessing time and memory overhead. Specifically, larger values of any si result in a more
complete view of the temporal graph structure that is encoded into the HOT model. This usually
increases the accuracy of predictions. On the other hand, they also increase the preprocessing as well
as the memory overhead. This is because both the size |Su| and the preprocessing time are O(s1s2)
(or O(

∏
i∈{1,...,k} si) for higher k).

3.2 Constructing Input Feature Matrices
In the next step, the model constructs neighbor and link encodings based on the raw node and
link features of the CTDG. For node u, it constructs the matrices Xu,N ∈ R|Su|×dN and Xu,E ∈
R|Su|×dE , where dN and dE are the dimensions of the node and edge feature vectors, respectively.
The matrix Xu,N is further extended to include a one-hot encoding to differentiate 1-hop neighbours
from 2-hop neighbours. Specifically, two values b1 and b2 are appended to every row in Xu,N . We
set b1 = 1 and b2 = 0 if the corresponding node is a 1-hop neighbour, and b1 = 0 and b2 = 1 if the
corresponding node is a 2-hop neighbour; dN is updated accordingly.

For positional encodings, we rely on the scheme introduced in the TGAT model, reused in DyGLib.
Here, for some timestamp t′, the time interval encoding for the time interval ∆t′ = t− t′ is given by√

1/dT [cos (w1∆t′) , sin (w1∆t′) , . . . , cos (wdT
∆t′) , sin (wdT

∆t′)] , (1)
where w1, . . . , wdT

are trainable weights. The model computes this for every interaction in Su,
forming Xu,T . All these matrices are constructed for v analogously.

3.3 Encoding Higher-Order Neighbor Interactions
We next extend the DyGFormer’s neighborhood encoding into the HO interactions. For this, we
introduce matrices Cu, which – for each vertex u – determine the count of neighbors shared by u and
any other vertex v interacting with u, enabling us to encode temporal triangles containing u and v (in
the following description, we focus on triangles for concreteness; other HO structures are enabled
by considering neighbors beyond 1 hop). Specifically, for any vertex u, the i-th row of the matrix
Cu ∈ R|Su|×2 contains two numbers. The first one is the number of occurrences of a neighbor w of
u (w is identified by the i-row of Su) within Su. The second number is the count of occurrences of w
within Sv , i.e., the temporal neighbourhood of v. Then, we project these vectors of occurrences onto
a dC-dimensional feature space using MLPs with one ReLU-activated hidden layer. The output are
the two matrices Xu,C ∈ R|Su|×dC , Xv,C ∈ R|Sv|×dC . Xu,C is then computed from Cu as follows
(Xv,C is computed analogously):

Xu,C = MLP0(Cu[:, 0]) + MLP1(Cu[:, 1]) ∈ R|Su|×dC . (2)

If u and v have a common 1-hop neighbour, then the subgraph induced by those three nodes is
a triangle. Thus, this encodes the information about u and v being a part of this triangle into the
harnessed feature matrix. More generally, by considering the common k-hop neighbors the model
can encode any cycle containing nodes u and v of length up to 2k + 1. By extension, it can also
encode any structure that is a conjunction of such cycles. This further increases the scope of the HO
structures taken into account.

3.4 Patching, Alignment, Concatenation
Before feeding X·,· into the selected efficient Transformer, we harness several optional transforma-
tions from DyGLib, which further improve the model performance and memory utilization. First, the
patching technique bundles multiple rows of a matrix together into one row, so as to reduce the size
of the input sequence. Then, alignment reduces the feature dimension of this input by projecting each
row onto a smaller dimension. Let us examine the scheme on the matrix Xu,N . The model constructs

Mu,N ∈ Rlu×P ·dN by dividing Xu,N into lu =
⌈
|Su|
P

⌉
patches and flattening P temporally adjacent

encodings. The same procedure is applied to the other matrices X·,·. The encodings then need to be
aligned to a common dimension d. For the matrix Mu,N , we have

Zu,N = Mu,NWN + bN ∈ Rlu×d, (3)

where WN ∈ RP ·dN×d and bN ∈ Rd are trainable parameters. The matrices Zu,E , Zu,T , and Zu,C

are extracted identically from the matrices Mu,E , Mu,T , and Mu,C . The same applies to the matrices
belonging to node v. Finally, the extracted matrices are concatenated horizontally into

Zu = Zu,N∥Zu,E∥Zu,T ∥Zu,C ∈ Rlu×4d, Zv = Zv,N∥Zv,E∥Zv,T ∥Zv,C ∈ Rlv×4d. (4)

4

HOT: Higher-Order Dynamic Graph Representation Learning with Efficient Transformers

3.5 Harnessing Temporal Hierarchy with Block-Recurrent Transformer
Finally, we harness a hierarchical Transformer to minimize memory required for keeping the HO
temporal structures. The BRT divides Z into B blocks and applies attention locally on each individual
block. Additionally, each block is cross-attended with a recurrent state, which allows the element
in one block to attend to a summary of the elements in the previous blocks. The outputs of each
block are then concatenated into a matrix H , which shares its dimensions with the input Z. Finally,
temporal node representations for nodes u and v are computed with the average pooling layer.

3.6 Computational Cost
Let s =

∏
i si, such that |Su| ∈ O(s) and |Sv| ∈ O(s) and let ∆ be the largest number of interactions

among vertices u and v. Then, the cost to compute Su and Sv is O(s∆ log∆). The cost to construct
the Zu and Zv is dominated by the alignment process, which costs O(sdNd) for the node matrix
Zu,N . The cost is analogous for the other matrices constituting Zu and Zv. The remaining costs
are that of the BRT model for feature dimension 8d, which is, in particular, linear in the number of
interactions s. The attention mechanism in a block-recurrent Transformer costs O(sdB/P) [60],
compared to Θ(s2d/P) in the vanilla Transformer. As the block size B approaches the number of
interactions s, the cost of the BRT attention approaches that of the vanilla Transformer.

4 Evaluation
We now illustrate the advantages of HOT over the state of the art.

4.1 Experimental Setup
We follow recent established methodologies for evaluating DGRL [88]. We list the most relevant
information here, and include details of model parameters and related information in the appendix.
We use the standard evaluation metrics, namely the Average Precision (AP) (using the scikit
implementation [85]) and the Area Under the ROC (AUC).

We use all major state-of-the-art baselines for DGRL on CTDGs; these are TGN [92], CAWN [120],
TCL [116], GraphMixer [36], DyGFormer [134]), as well as a purely memorisation-based approach
(EdgeBank [88]). Note that our analyses confirm recent findings that illustrate the superiority of
DyGFormer among these baselines [134].

We consider both transductive and inductive setting. In the former, the whole graph structure is
visible during training. In the latter, we test the dynamic link prediction and the dynamic node
classification on the graph structure that was not visible during training.

Recent work on benchmarking dynamic GRL [134] illustrates the importance of evaluating different
sampling schemes beyond plain random sampling. We follow this approach and use all three discussed
sampling strategies, showing that HOT achieves competitive results over the state of the art regardless
of how links are sampled. First, we use random sampling (RNES), which is widely used in most
dynamic link prediction evaluations. In RNES, when observing some positive edge sample, we
generate a negative one by changing its destination node to some random vertex. Second, we use a
recent scheme called historical sampling (HNES) [88]. In many datasets, it is common to observe
repeated interactions (i.e., edges that appear and disappear several times). With random sampling,
most negative edge queries will be new to the model (i.e., unobsered in the past). As such, it becomes
easy to discard these edges, instead of discardig the repeated edges. In historical sampling, we
sample negative edges from the set of previously observed edges, which do not appear in the current
timestamp (if we cannot sample enough edges this way, the rest is sampled using random sampling).
Third, we also use inductive sampling (INES) [88], in which we sample edges from those that were
not seen during training and do not appear in the current timestamp, i.e., new edges. As before, if we
cannot sample enough edges this way, the rest is sampled using the random sampling technique. This
scheme produces a metric to better evaluate the model’s ability to induce new relations.

All three above sampling schemes can be considered for both transductive or inductive evaluation
setting. Note that we do not consider the historical and the inductive sampling techniques in the
inductive evaluation setting. This is because the sampled set becomes quite small and unlikely to
produce meaningful results. Additionally, consider that both techniques are equivalent in the inductive
setting. This is clearly visible in the results obtained by DyGFormer [134].

4.2 Analysis of Performance
We illustrate the comparison of the performance of different models in Figure 2. In the MOOC graph
dataset, the model successfully leverages 2-hop interactions to make its predictions more accurate.

5

HOT: Higher-Order Dynamic Graph Representation Learning with Efficient Transformers

The MOOC graph dataset

Comparison of models Comparison of HO used

Comparison of models Comparison of HO used

The CanParl graph dataset

The LastFM graph dataset

Comparison of models
Comparison of HO used

Figure 2: AP (%) and AUC (%) scores on the MOOC, LastFM and CanParl datasets using the various negative edge sampling techniques
(RNES, HNES, INES) in the transductive setting, and using the random negative edge sampling technique in the inductive setting (Ind). Baseline
results are the best ones provided by [134].

6

HOT: Higher-Order Dynamic Graph Representation Learning with Efficient Transformers

This leads to the best results over all the evaluation metrics and negative edge sampling strategies.
These advantages hold for both inductive and inductive settings. Similar performance patterns can
be seen for the LastFM dataset, where higher-order neighbors also enable obtaining more powerful
predictions. As for the Can. Parl. dataset, the results obtained without the higher-order structure
are already quite high, and the additional graph structural information does not seem to be adding
significant amount of value to the model in this case. Furthermore, it is possible that the decay in
performance with higher s2 values originates from the added noise that comes with considering more
information. In any case, HOT still ensures the highest scores for both the AP and the AUC metric.

Another factor that benefits HOT, particularly in comparison with the DyGFormer, is the horizontal
concatenation of the matrices Zu and Zv , as opposed to the vertical concatenation in the DyGFormer
case. This concatenation strategy forces the attention modules to consider the elements in the same
position (in either sequences) together, as one element. We conjecture that this additionally allows
the model to better infer the chronological position of each element in the sequence.

4.3 Analysis of Higher-Order (HO) Characteristics
The benefits of harnessing HO structures are clearly visible in the rightmost plots of Figure 2. There,
we fix s1 and vary s2. For the MOOC and LastFM, we consider s2 ∈ {0, 1}; for CanParl, we consider
s2 ∈ {0, 1, 2, 4}. By setting s2 = 0, we exclude any HO structures beyond triangles from the model’s
consideration (the results in this setting correspond to the bars labeled "1-hop"). Overall, CanParl
does not benefit from higher values of s2. Contrarily, for the other two datasets, the model clearly
benefits from the HO structures. Setting s2 = 1, i.e., considering not only triangles, but any cycles of
up to 5 nodes, further improves performance.

4.4 Analysis of Memory Consumption
We also investigate in more detail the impact of the block size B (see Section 3.5) and the patch
size P (see Section 3.4) on the memory consumption. The results are in Figure 3 and they show the
size needed for the attention matrix in Vanilla Transformer, compared to HOT. First, assuming that
blocks are processed sequentially as in RNNs, reducing B also decreases the needed memory (for a
fixed P). While large values of B inflate the total memory beyond what is needed for the Vanilla
Transformer, smaller blocks result in much less memory needed. This comes with a tradeoff, and
the latency to process the model increases linearly with the number of blocks. This however can be
alleviated with schemes designed to specifically speed up the RNN processing. The patch size P has
a similar effect: the smaller it is, the more memory is required for Vanilla Transformer (for a fixed
B), due to the patching flattening (Section 3.4). Hence, selecting B and P is a design choice that
would impact both the needed memory and performance. In our implementation, we offer a set of
scripts that offer a quick assessment of the required memory, facilitating the design of schemes based
on HOT. Overall, based on the given input sequence length S, the patch size P , and the block size
B, the total amount of elements in attention matrices of the vanilla Transformer can be assessed as
(3S/P) · (8d). Furthermore, considering just one block, the attention matrix based on BRT needs
about (9 · 2B) · (8d) elements.

5 Discussion
5.1 Applications of HOT Beyond Link Prediction
The generic structure of HOT ensures that it can be straightforwardly extended towards other dynamic
graph ML tasks, including edge, node, or graph classification or regression.

To illustrate this on a concrete example, we implemented dynamic node classification within HOT.
Here, we are given a CTDG (G(0), T), a timestamp t ∈ N, a node v ∈ V , and a set of N ∈ N classes
{Si}Ni=1. The goal is to decide, for which 1 ≤ i ≤ N , v ∈ Si. Naturally, we assume v ∈

⋃N
i=1 Si

∀v ∈ V . To solve this task in HOT, we employ transfer learning, i.e., we harness the parameters from
the dynamic link prediction task to compute suitable dynamic node representations, and then train a
suitable MLP decoder on those representations. The preliminary evaluation indicate performance
comparable to, or better than DyGFormer on – respectively – the Wikipedia and the Reddit datasets.
A more detailed investigation into the model design for dynamic node classification, as well as
more extensive evaluations, are future work. However, our preliminary results indicate potential in
harnessing the HO structures in the general dynamic GRL setting.

Other dynamic GRL tasks could be achieved using established GRL methods. For example,
graph classification could be used by applying pooling on top of the edge and node classifica-
tion [9, 55, 66, 99, 100, 129].

7

HOT: Higher-Order Dynamic Graph Representation Learning with Efficient Transformers

CanPerl dataset

CanPerl dataset LastFM dataset

LastFM dataset MOOC dataset

MOOC dataset

Analysis on the impact of block size on memory utilization

Analysis on the impact of patch size on memory utilization

HOTHOTHOT

HOT HOT HOT

Figure 3: The analysis of the impact of the block and patch size on memory utilization.

5.2 Limitations of HOT
The limitations of HOT are largely analogous to those of any HO scheme. First, the time complexity
required to search for HO structures may limit the size of the graphs or the length of the temporal
history to be considered. Here, HOT’s harnessing of efficient Transformers alleviates the time and
storage complexity needed for the on-the-fly predictions. Still, HOT needs to search for HO structures
to construct the input feature matrices; however, it is a one-time preprocessing overhead for a given
dataset. Second, utilizing “too much” of HO may introduce excessive amounts of noise and ultimately
lower the accuracy. This limitation is also generic to HO learning, it is commonly alleviated by
appropriately limiting the size of the harnessed HO structures [137].

6 Related Work
Our work touches on many areas. We now briefly discuss related works.

Graph Neural Networks and Graph Representation Learning Graph neural networks (GNNs)
emerged as a highly successful part of the graph representation learning (GRL) field [52]. Numerous
GNN models have been developed [19, 20, 30, 33, 49, 52, 97, 125, 139, 142], including convolu-
tional [53, 70, 102, 123, 128], attentional [23, 82, 106, 112], message-passing [10, 28, 50, 96, 121],
or – more recently – higher-order (HO) ones [1, 1, 13, 26, 83, 93, 94]. Moreover, a large number
of software frameworks [44, 58, 62, 73, 80, 109, 113–115, 117, 119, 124, 136, 141, 143], and even
hardware accelerators [48, 68, 69, 75, 130] for processing GNNs have been introduced over the last
years. All these schemes target static graphs, with no updates, while in this work, we target the

8

HOT: Higher-Order Dynamic Graph Representation Learning with Efficient Transformers

dynamic GRL, where graphs evolve over time. However, our model can be seamlessly used for a
temporal static setting, where the graph comes with the available history of past updates.

Dynamic Graph Representation Learning There have been many approaches to solving dynamic
GRL in the past years. JODIE [71] is an RNN-based approach for bipartite graphs. The model
constructs and maintains embeddings of source and target nodes and updates these recurrently
using different RNNs. DyRep [110] is an RNN-based approach, which keeps node representations
and updates them using a self-attention mechanism, which dynamically weights the importance of
different structures in the graph. TGAT [127] computes node representations based on the static
GAT model [112], i.e., by aggregating messages from the temporal neighborhood of each node using
self-attention. The main difference between TGAT and GAT is that timestamps are taken as input
as well and taken into consideration after a suitable time encoding is found. TGN [92] divides the
model architecture into the message function, the message aggregator, the memory updater, and the
embedding module. Given two nodes and a timestamp, the model fetches node representations from
memory, aggregates them, and updates its memory. It then builds node embeddings for downstream
tasks using a TGAT-like layer. CAWN [120] builds on the concept of anonymous walks [61]
and extends them to consider the time dimension. Given two nodes and a timestamp, the model
collects causal anonymous walks starting from both nodes. They are then encoded using RNNs
and finally aggregated for predictions. TCL [116] first orders previous interactions of each node in
some order that reflects both temporal and structural positioning (for any two pairs of nodes). The
model then runs a Transformer on each of the nodes’ previous interactions. These Transformers
are coupled through cross-attention. GraphMixer [36] is a simple architecture consisting of three
modules: the link encoder, the node encoder, and the link classifier. The link encoder summarizes
temporal link information using an MLP-mixer [107], and the node encoder captures node information
using neighbour mean-pooling. The link classifier applies a 2-layer MLP on the output of the two
other modules to formulate a prediction. Finally, DyGFormer [134] is an approach based on the
Transformer model. The model proposed in this work, HOT, extends DyGFormer and outperforms
all other baselines for different datasets thanks to harnessing the HO graph structures.

Dynamic and Streaming Graph Computing There also exist systems for processing dynamic and
streaming graphs [14, 15, 35, 95] beyond GRL. Graph streaming frameworks such as STINGER [43]
or Aspen [40] emerged to enable processing and analyzing dynamically evolving graphs. Graph
databases are systems used to manage, process, analyze, and store vast amounts of rich and complex
graph datasets. Graph databases have a long history of development and focus in both academia
and in the industry, and there has been significant work on them [4, 5, 16–18, 39, 47, 54, 64, 72].
Such systems often execute graph analytics algorithms (e.g., PageRank) concurrently with graph
updates (e.g., edge insertions). Thus, these frameworks must tackle unique challenges, for example
effective modeling and storage of dynamic datasets, efficient ingestion of a stream of graph updates
concurrently with graph queries, or support for effective programming model. Here, recently
introduced Neural graph databases focus on integrating Graph Databases with GRL capabilities [21,
91]. Our model could be used to extend these systems with dynamic GRL workloads.

7 Conclusion
Dynamic graph representation learning (DGRL), where graph datasets may ingest millions of edge
updates per second, is an area of growing importance. In this work, we enhance one of the most recent
and powerful works in DGRL, the Transformer-based DGRL, by harnessing higher-order (HO) graph
structures: k-hop neighbors and more general subgraphs. As this approach enables harnessing more
information from the temporal dimension, it results in the higher accuracy of prediction outcomes.
Simultaneously, it comes at the expense of increased memory pressure through the larger underlying
attention matrix. For this, we employ a recent class of Transformer models that impose hierarchy on
the attention matrix, picking Block-Recurrent Transformer for concreteness. This reduces memory
footprint while ensuring – for example – 9%, 7%, and 15% higher accuracy in dynamic link prediction
than – respectively – DyGFormer, TGN, and GraphMixer, for the MOOC dataset.

Our design illustrates that a careful combination of models and paradigms used in different settings,
such as the Higher-Order graph structures and the Block-Recurrent Transformer, results in advantages
in both performance and memory footprint in DGRL. This approach could be extended by considering
other state-of-the-art Transformer schemes or HO GNN models.

9

HOT: Higher-Order Dynamic Graph Representation Learning with Efficient Transformers

Acknowledgements
We thank Hussein Harake, Colin McMurtrie, Mark Klein, Angelo Mangili, and the whole CSCS
team granting access to the Ault and Daint machines, and for their excellent technical support. We
thank Timo Schneider for help with infrastructure at SPCL. This project received funding from the
European Research Council (Project PSAP, No. 101002047), and the European High-Performance
Computing Joint Undertaking (JU) under grant agreement No. 955513 (MAELSTROM). This project
was supported by the ETH Future Computing Laboratory (EFCL), financed by a donation from
Huawei Technologies. This project received funding from the European Union’s HE research and
innovation programme under the grant agreement No. 101070141 (Project GLACIATION).

References
[1] Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr Harutyun-

yan, Greg Ver Steeg, and Aram Galstyan. 2019. Mixhop: Higher-order graph convolutional architectures
via sparsified neighborhood mixing. In international conference on machine learning. PMLR, 21–29. 2, 8

[2] Unai Alvarez-Rodriguez, Federico Battiston, Guilherme Ferraz de Arruda, Yamir Moreno, Matjaž Perc,
and Vito Latora. 2021. Evolutionary dynamics of higher-order interactions in social networks. Nature
Human Behaviour 5, 5 (2021), 586–595. 1

[3] Khaled Ammar. 2016. Techniques and Systems for Large Dynamic Graphs. In SIGMOD’16 PhD
Symposium. ACM, 7–11. 1

[4] Renzo Angles and Claudio Gutierrez. 2008. Survey of Graph Database Models. in ACM Comput. Surv.
40, 1, Article 1 (2008), 39 pages. https://doi.org/10.1145/1322432.1322433 9

[5] Renzo Angles and Claudio Gutierrez. 2018. An Introduction to Graph Data Management. In Graph Data
Management, Fundamental Issues and Recent Developments. 1–32. 9

[6] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450 (2016). 17

[7] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473 (2014). 2

[8] Lei Bai, Lina Yao, Can Li, Xianzhi Wang, and Can Wang. 2020. Adaptive graph convolutional recurrent
network for traffic forecasting. Advances in neural information processing systems 33 (2020), 17804–
17815. 1

[9] Claudio DT Barros, Matheus RF Mendonça, Alex B Vieira, and Artur Ziviani. 2021. A survey on
embedding dynamic graphs. ACM Computing Surveys (CSUR) 55, 1 (2021), 1–37. 1, 7

[10] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al. 2018.
Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261 (2018).
8

[11] Federico Battiston, Giulia Cencetti, Iacopo Iacopini, Vito Latora, Maxime Lucas, Alice Patania, Jean-
Gabriel Young, and Giovanni Petri. 2020. Networks beyond pairwise interactions: structure and dynamics.
Physics Reports 874 (2020), 1–92. 2

[12] Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150 (2020). 2, 3

[13] Austin R Benson et al. 2018. Simplicial closure and higher-order link prediction. Proceedings of the
National Academy of Sciences 115, 48 (2018), E11221–E11230. 8

[14] Maciej Besta. 2021. Enabling High-Performance Large-Scale Irregular Computations. Ph. D. Dissertation.
ETH Zurich. 9

[15] Maciej Besta et al. 2022. Practice of Streaming Processing of Dynamic Graphs: Concepts, Models, and
Systems. IEEE TPDS (2022). 1, 9

[16] Maciej Besta et al. 2023. The Graph Database Interface: Scaling Online Transactional and Analytical
Graph Workloads to Hundreds of Thousands of Cores. In ACM/IEEE Supercomputing. 1, 9

[17] Maciej Besta, Robert Gerstenberger, Nils Blach, Marc Fischer, and Torsten Hoefler. 2023. GDI: A Graph
Database Interface Standard. Technical Report. Available at https://spcl.inf.ethz.ch/Research/
Parallel_Programming/GDI/.

[18] Maciej Besta, Robert Gerstenberger, Peter Emanuel, Marc Fischer, Michał Podstawski, Claude Barthels,
Gustavo Alonso, and Torsten Hoefler. 2023. Demystifying Graph Databases: Analysis and Taxonomy of
Data Organization, System Designs, and Graph Queries. ACM CSUR (2023). 9

10

https://doi.org/10.1145/1322432.1322433
https://spcl.inf.ethz.ch/Research/Parallel_Programming/GDI/
https://spcl.inf.ethz.ch/Research/Parallel_Programming/GDI/

HOT: Higher-Order Dynamic Graph Representation Learning with Efficient Transformers

[19] Maciej Besta, Raphael Grob, Cesare Miglioli, Nicola Bernold, Grzegorz Kwasniewski, Gabriel Gjini,
Raghavendra Kanakagiri, Saleh Ashkboos, Lukas Gianinazzi, Nikoli Dryden, et al. 2022. Motif Prediction
with Graph Neural Networks. In ACM KDD. 8

[20] Maciej Besta and Torsten Hoefler. 2023. Parallel and Distributed Graph Neural Networks: An In-Depth
Concurrency Analysis. IEEE TPAMI (2023). 8

[21] Maciej Besta, Patrick Iff, Florian Scheidl, Kazuki Osawa, Nikoli Dryden, Michal Podstawski, Tiancheng
Chen, and Torsten Hoefler. 2022. Neural Graph Databases. In LOG. 9

[22] Maciej Besta, Cesare Miglioli, Paolo Sylos Labini, Jakub Tětek, Patrick Iff, Raghavendra Kanakagiri,
Saleh Ashkboos, Kacper Janda, Michał Podstawski, Grzegorz Kwaśniewski, et al. 2022. Probgraph:
High-performance and high-accuracy graph mining with probabilistic set representations. In SC22:
International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE,
1–17. 1

[23] Maciej Besta, Pawel Renc, Robert Gerstenberger, Paolo Sylos Labini, Alexandros Ziogas, Tiancheng
Chen, Lukas Gianinazzi, Florian Scheidl, Kalman Szenes, Armon Carigiet, et al. 2023. High-Performance
and Programmable Attentional Graph Neural Networks with Global Tensor Formulations. In Proceedings
of the International Conference for High Performance Computing, Networking, Storage and Analysis.
1–16. 8

[24] Maciej Besta, Zur Vonarburg-Shmaria, Yannick Schaffner, Leonardo Schwarz, Grzegorz Kwasniewski,
Lukas Gianinazzi, Jakub Beranek, Kacper Janda, Tobias Holenstein, Sebastian Leisinger, et al. 2021.
Graphminesuite: Enabling high-performance and programmable graph mining algorithms with set algebra.
arXiv preprint arXiv:2103.03653 (2021). 1

[25] Christian Bick, Elizabeth Gross, Heather A Harrington, and Michael T Schaub. 2021. What are higher-
order networks? arXiv preprint arXiv:2104.11329 (2021). 2

[26] Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Lio, Guido F Montufar, and Michael
Bronstein. 2021. Weisfeiler and lehman go cellular: Cw networks. Advances in Neural Information
Processing Systems 34 (2021), 2625–2640. 8

[27] Antoine Bordes, Nicolas Usunier, Sumit Chopra, and Jason Weston. 2015. Large-scale Simple Question
Answering with Memory Networks. arXiv:1506.02075 [cs.LG] 1

[28] Xavier Bresson and Thomas Laurent. 2017. Residual gated graph convnets. arXiv preprint
arXiv:1711.07553 (2017). 8

[29] Denny Britz, Anna Goldie, Minh-Thang Luong, and Quoc Le. 2017. Massive exploration of neural
machine translation architectures. arXiv preprint arXiv:1703.03906 (2017). 2

[30] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. 2017. Geomet-
ric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine 34, 4 (2017), 18–42.
8

[31] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing systems 33 (2020), 1877–1901. 2

[32] Ziang Cao, Changhong Fu, Junjie Ye, Bowen Li, and Yiming Li. 2021. Hift: Hierarchical feature
transformer for aerial tracking. In Proceedings of the IEEE/CVF International Conference on Computer
Vision. 15457–15466. 2

[33] Ines Chami, Sami Abu-El-Haija, Bryan Perozzi, Christopher Ré, and Kevin Murphy. 2020. Machine
learning on graphs: A model and comprehensive taxonomy. arXiv preprint arXiv:2005.03675 (2020). 8

[34] Xiaofu Chang, Xuqin Liu, Jianfeng Wen, Shuang Li, Yanming Fang, Le Song, and Yuan Qi. 2020.
Continuous-time dynamic graph learning via neural interaction processes. In Proceedings of the 29th
ACM International Conference on Information & Knowledge Management. 145–154. 1, 2

[35] Sutanay Choudhury, Khushbu Agarwal, Sumit Purohit, Baichuan Zhang, Meg Pirrung, Will Smith, and
Mathew Thomas. 2017. Nous: Construction and querying of dynamic knowledge graphs. In IEEE ICDE.
1563–1565. 9

[36] Weilin Cong, Si Zhang, Jian Kang, Baichuan Yuan, Hao Wu, Xin Zhou, Hanghang Tong, and Mehrdad
Mahdavi. 2023. Do We Really Need Complicated Model Architectures For Temporal Networks? arXiv
preprint arXiv:2302.11636 (2023). 1, 2, 5, 9

[37] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan Salakhutdinov.
2019. Transformer-xl: Attentive language models beyond a fixed-length context. arXiv preprint
arXiv:1901.02860 (2019). 2, 3, 17

[38] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. 2022. Flashattention: Fast and
memory-efficient exact attention with io-awareness. Advances in Neural Information Processing Systems
35 (2022), 16344–16359. 2

11

HOT: Higher-Order Dynamic Graph Representation Learning with Efficient Transformers

[39] Ali Davoudian, Liu Chen, and Mengchi Liu. 2018. A survey on NoSQL stores. ACM Computing Surveys
(CSUR) 51, 2, Article 40 (2018), 43 pages. https://doi.org/10.1145/3158661 9

[40] Laxman Dhulipala et al. 2019. Low-Latency Graph Streaming Using Compressed Purely-Functional
Trees. arXiv:1904.08380 (2019). 9

[41] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. 2020. An image
is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929
(2020). 2

[42] Ziwei Fan, Zhiwei Liu, Jiawei Zhang, Yun Xiong, Lei Zheng, and Philip S Yu. 2021. Continuous-time
sequential recommendation with temporal graph collaborative transformer. In Proceedings of the 30th
ACM international conference on information & knowledge management. 433–442. 1

[43] Guoyao Feng et al. 2015. DISTINGER: A distributed graph data structure for massive dynamic graph
processing. In IEEE Big Data. 1814–1822. 9

[44] Matthias Fey and Jan Eric Lenssen. 2019. Fast graph representation learning with PyTorch Geometric.
arXiv preprint arXiv:1903.02428 (2019). 8

[45] Fabrizio Frasca, Beatrice Bevilacqua, Michael Bronstein, and Haggai Maron. 2022. Understanding and
extending subgraph gnns by rethinking their symmetries. Advances in Neural Information Processing
Systems 35 (2022), 31376–31390. 2

[46] Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben Chamberlain, Michael Bronstein, and Federico
Monti. 2020. Sign: Scalable inception graph neural networks. arXiv preprint arXiv:2004.11198 (2020). 2

[47] Santhosh Kumar Gajendran. 2012. A survey on NoSQL databases. University of Illinois (2012). 9

[48] Tong Geng, Ang Li, Runbin Shi, Chunshu Wu, Tianqi Wang, Yanfei Li, Pouya Haghi, Antonino Tumeo,
Shuai Che, Steve Reinhardt, et al. 2020. AWB-GCN: A graph convolutional network accelerator with
runtime workload rebalancing. In IEEE/ACM MICRO. 8

[49] Lukas Gianinazzi, Maximilian Fries, Nikoli Dryden, Tal Ben-Nun, and Torsten Hoefler. 2021. Learning
Combinatorial Node Labeling Algorithms. arXiv preprint arXiv:2106.03594 (2021). 8

[50] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. 2017. Neural
message passing for quantum chemistry. In International Conference on Machine Learning. PMLR,
1263–1272. 8

[51] Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, and Huaiyu Wan. 2019. Attention based spatial-
temporal graph convolutional networks for traffic flow forecasting. In Proceedings of the AAAI conference
on artificial intelligence, Vol. 33. 922–929. 1

[52] William L Hamilton et al. 2017. Representation learning on graphs: Methods and applications. arXiv
preprint arXiv:1709.05584 (2017). 8

[53] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation learning on large
graphs. In NeurIPS. 8

[54] Jing Han, E Haihong, Guan Le, and Jian Du. 2011. Survey on NoSQL database. In 2011 6th international
conference on pervasive computing and applications. IEEE, 363–366. 9

[55] Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui Wang, and Yulin Wang. 2021. Dynamic neural
networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 11 (2021),
7436–7456. 1, 7

[56] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition. 770–778.
17

[57] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory. 9, 8 (1997), 46 pages.
https://doi.org/10.1162/neco.1997.9.8.1735 2

[58] Yuwei Hu et al. 2020. Featgraph: A flexible and efficient backend for graph neural network systems.
arXiv preprint arXiv:2008.11359 (2020). 8

[59] Zijie Huang, Yizhou Sun, and Wei Wang. 2020. Learning continuous system dynamics from irregularly-
sampled partial observations. Advances in Neural Information Processing Systems 33 (2020), 16177–
16187. 1

[60] DeLesley Hutchins, Imanol Schlag, Yuhuai Wu, Ethan Dyer, and Behnam Neyshabur. 2022. Block-
recurrent transformers. arXiv preprint arXiv:2203.07852 (2022). 2, 5

[61] Sergey Ivanov and Evgeny Burnaev. 2018. Anonymous walk embeddings. In International conference on
machine learning. PMLR, 2186–2195. 9

[62] Zhihao Jia et al. 2020. Improving the accuracy, scalability, and performance of graph neural networks
with roc. MLSys (2020). 8

12

https://doi.org/10.1145/3158661
https://doi.org/10.1162/neco.1997.9.8.1735

HOT: Higher-Order Dynamic Graph Representation Learning with Efficient Transformers

[63] Ming Jin, Yuan-Fang Li, and Shirui Pan. 2022. Neural temporal walks: Motif-aware representation
learning on continuous-time dynamic graphs. Advances in Neural Information Processing Systems 35
(2022), 19874–19886. 1, 2

[64] R. Kumar Kaliyar. 2015. Graph databases: A survey. In ICCCA. 785–790. 9

[65] Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi, Peter Forsyth, and Pascal
Poupart. 2020. Representation learning for dynamic graphs: A survey. The Journal of Machine Learning
Research 21, 1 (2020), 2648–2720. 1

[66] Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi, Peter Forsyth, and Pascal
Poupart. 2020. Representation learning for dynamic graphs: A survey. The Journal of Machine Learning
Research 21, 1 (2020), 2648–2720. 1, 7

[67] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014). 20

[68] Kevin Kiningham, Philip Levis, and Christopher Ré. 2020. GReTA: Hardware Optimized Graph Process-
ing for GNNs. In ReCoML. 8

[69] Kevin Kiningham, Christopher Re, and Philip Levis. 2020. GRIP: a graph neural network accelerator
architecture. arXiv preprint arXiv:2007.13828 (2020). 8

[70] Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907 (2016). 8

[71] Srijan Kumar, Xikun Zhang, and Jure Leskovec. 2019. Predicting dynamic embedding trajectory in
temporal interaction networks. In Proceedings of the 25th ACM SIGKDD international conference on
knowledge discovery & data mining. 1269–1278. 1, 2, 9

[72] Vijay Kumar and Anjan Babu. 2015. Domain Suitable Graph Database Selection: A Preliminary Report.
In 3rd International Conference on Advances in Engineering Sciences & Applied Mathematics, London,
UK. 26–29. 9

[73] Shen Li et al. 2020. Pytorch distributed: Experiences on accelerating data parallel training. arXiv preprint
arXiv:2006.15704 (2020). 8

[74] Xiaohan Li, Mengqi Zhang, Shu Wu, Zheng Liu, Liang Wang, and S Yu Philip. 2020. Dynamic graph
collaborative filtering. In 2020 IEEE international conference on data mining (ICDM). IEEE, 322–331. 1

[75] Shengwen Liang, Ying Wang, Cheng Liu, Lei He, LI Huawei, Dawen Xu, and Xiaowei Li. 2020. Engn:
A high-throughput and energy-efficient accelerator for large graph neural networks. IEEE TOC (2020). 8

[76] Bryan Lim, Sercan Ö Arık, Nicolas Loeff, and Tomas Pfister. 2021. Temporal fusion transformers for
interpretable multi-horizon time series forecasting. International Journal of Forecasting 37, 4 (2021),
1748–1764. 2

[77] Songtao Liu, Lingwei Chen, Hanze Dong, Zihao Wang, Dinghao Wu, and Zengfeng Huang. 2019.
Higher-order weighted graph convolutional networks. arXiv preprint arXiv:1911.04129 (2019). 2

[78] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
2021. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision. 10012–10022. 2

[79] Yuhong Luo and Pan Li. 2022. Neighborhood-aware scalable temporal network representation learning.
In Learning on Graphs Conference. PMLR, 1–1. 2

[80] Lingxiao Ma, Zhi Yang, Youshan Miao, Jilong Xue, Ming Wu, Lidong Zhou, and Yafei Dai. 2019.
Neugraph: parallel deep neural network computation on large graphs. In USENIX ATC. 8

[81] Yao Ma, Ziyi Guo, Zhaocun Ren, Jiliang Tang, and Dawei Yin. 2020. Streaming graph neural networks. In
Proceedings of the 43rd international ACM SIGIR conference on research and development in information
retrieval. 719–728. 1, 2

[82] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and Michael M
Bronstein. 2017. Geometric deep learning on graphs and manifolds using mixture model cnns. In IEEE
CVPR. 8

[83] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav Rattan,
and Martin Grohe. 2019. Weisfeiler and leman go neural: Higher-order graph neural networks. In
Proceedings of the AAAI conference on artificial intelligence, Vol. 33. 4602–4609. 2, 8

[84] Raghavendra Pappagari, Piotr Zelasko, Jesús Villalba, Yishay Carmiel, and Najim Dehak. 2019. Hierar-
chical transformers for long document classification. In 2019 IEEE automatic speech recognition and
understanding workshop (ASRU). IEEE, 838–844. 2

[85] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R.
Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
2011. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 12 (2011),
2825–2830. 5, 19

13

HOT: Higher-Order Dynamic Graph Representation Learning with Efficient Transformers

[86] Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Huanqi Cao, Xin Cheng,
Michael Chung, Matteo Grella, Kranthi Kiran GV, et al. 2023. RWKV: Reinventing RNNs for the
Transformer Era. arXiv preprint arXiv:2305.13048 (2023). 2

[87] Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W Battaglia. 2020. Learning
mesh-based simulation with graph networks. arXiv preprint arXiv:2010.03409 (2020). 1

[88] Farimah Poursafaei, Shenyang Huang, Kellin Pelrine, and Reihaneh Rabbany. 2022. Towards Better
Evaluation for Dynamic Link Prediction. arXiv preprint arXiv:2207.10128 (2022). 5

[89] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. 2018. Improving language
understanding by generative pre-training. (2018). 2

[90] Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, and Timothy P Lillicrap. 2019. Compressive
transformers for long-range sequence modelling. arXiv preprint arXiv:1911.05507 (2019). 2

[91] Hongyu Ren, Mikhail Galkin, Michael Cochez, Zhaocheng Zhu, and Jure Leskovec. 2023. Neural graph
reasoning: Complex logical query answering meets graph databases. arXiv preprint arXiv:2303.14617
(2023). 9

[92] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and Michael
Bronstein. 2020. Temporal graph networks for deep learning on dynamic graphs. arXiv preprint
arXiv:2006.10637 (2020). 1, 2, 5, 9

[93] Ryan A. Rossi, Nesreen K. Ahmed, and Eunyee Koh. 2018. Higher-Order Network Representation
Learning. In Companion Proceedings of the The Web Conference 2018 (WWW ’18). International World
Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE, 3–4. https:
//doi.org/10.1145/3184558.3186900 8

[94] Ryan A. Rossi, Nesreen K. Ahmed, Eunyee Koh, Sungchul Kim, Anup Rao, and Yasin Abbasi Yad-
kori. 2018. HONE: Higher-Order Network Embeddings. arXiv:1801.09303 [cs, stat] (May 2018).
arXiv:1801.09303 [cs, stat] 8

[95] Sherif Sakr et al. 2020. The Future is Big Graphs! A Community View on Graph Processing Systems.
arXiv preprint arXiv:2012.06171 (2020). 1, 9

[96] Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter Battaglia.
2020. Learning to simulate complex physics with graph networks. In ICML. 1, 8

[97] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. 2008.
The graph neural network model. IEEE transactions on neural networks 20, 1 (2008), 61–80. 8

[98] Noam Shazeer. 2020. Glu variants improve transformer. arXiv preprint arXiv:2002.05202 (2020). 19

[99] Ann E Sizemore and Danielle S Bassett. 2018. Dynamic graph metrics: Tutorial, toolbox, and tale.
NeuroImage 180 (2018), 417–427. 1, 7

[100] Joakim Skarding, Bogdan Gabrys, and Katarzyna Musial. 2021. Foundations and modeling of dynamic
networks using dynamic graph neural networks: A survey. IEEE Access 9 (2021), 79143–79168. 1, 7

[101] Weiping Song, Zhiping Xiao, Yifan Wang, Laurent Charlin, Ming Zhang, and Jian Tang. 2019. Session-
based social recommendation via dynamic graph attention networks. In Proceedings of the Twelfth ACM
international conference on web search and data mining. 555–563. 1

[102] Sainbayar Sukhbaatar, Rob Fergus, et al. 2016. Learning multiagent communication with backpropagation.
NeurIPS (2016). 8

[103] Sainbayar Sukhbaatar, arthur szlam, Jason Weston, and Rob Fergus. 2015. End-To-End Memory Networks.
In Advances in Neural Information Processing Systems, C. Cortes, N. Lawrence, D. Lee, M. Sugiyama,
and R. Garnett (Eds.), Vol. 28. Curran Associates, Inc. https://proceedings.neurips.cc/paper_
files/paper/2015/file/8fb21ee7a2207526da55a679f0332de2-Paper.pdf 1

[104] Yutao Sun, Li Dong, Barun Patra, Shuming Ma, Shaohan Huang, Alon Benhaim, Vishrav Chaudhary, Xia
Song, and Furu Wei. 2022. A length-extrapolatable transformer. arXiv preprint arXiv:2212.10554 (2022).
19

[105] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to Sequence Learning with Neural
Networks. In Advances in Neural Information Processing Systems, Z. Ghahramani, M. Welling, C. Cortes,
N. Lawrence, and K.Q. Weinberger (Eds.), Vol. 27. Curran Associates, Inc. 2

[106] Kiran K Thekumparampil, Chong Wang, Sewoong Oh, and Li-Jia Li. 2018. Attention-based graph neural
network for semi-supervised learning. arXiv preprint arXiv:1803.03735 (2018). 8

[107] Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Unterthiner,
Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. 2021. Mlp-mixer: An all-mlp
architecture for vision. Advances in neural information processing systems 34 (2021), 24261–24272. 9

[108] Leo Torres, Ann S Blevins, Danielle Bassett, and Tina Eliassi-Rad. 2021. The why, how, and when of
representations for complex systems. SIAM Rev. 63, 3 (2021), 435–485. 2

14

https://doi.org/10.1145/3184558.3186900
https://doi.org/10.1145/3184558.3186900
https://proceedings.neurips.cc/paper_files/paper/2015/file/8fb21ee7a2207526da55a679f0332de2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/8fb21ee7a2207526da55a679f0332de2-Paper.pdf

HOT: Higher-Order Dynamic Graph Representation Learning with Efficient Transformers

[109] Alok Tripathy, Katherine Yelick, and Aydın Buluç. 2020. Reducing communication in graph neural
network training. In ACM/IEEE Supercomputing. 8

[110] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. 2019. Dyrep: Learning
representations over dynamic graphs. In International conference on learning representations. 1, 2, 9

[111] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In NeurIPS. 1, 2

[112] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.
2017. Graph attention networks. arXiv preprint arXiv:1710.10903 (2017). 8, 9

[113] Roger Waleffe, Jason Mohoney, Theodoros Rekatsinas, and Shivaram Venkataraman. 2022. Marius++:
Large-Scale Training of Graph Neural Networks on a Single Machine. arXiv preprint arXiv:2202.02365
(2022). 8

[114] Cheng Wan, Youjie Li, Ang Li, Nam Sung Kim, and Yingyan Lin. 2022. BNS-GCN: Efficient Full-Graph
Training of Graph Convolutional Networks with Partition-Parallelism and Random Boundary Node
Sampling Sampling. MLSys (2022).

[115] Cheng Wan, Youjie Li, Cameron R Wolfe, Anastasios Kyrillidis, Nam Sung Kim, and Yingyan Lin.
2022. PipeGCN: Efficient full-graph training of graph convolutional networks with pipelined feature
communication. arXiv preprint arXiv:2203.10428 (2022). 8

[116] Lu Wang, Xiaofu Chang, Shuang Li, Yunfei Chu, Hui Li, Wei Zhang, Xiaofeng He, Le Song, Jingren
Zhou, and Hongxia Yang. 2021. Tcl: Transformer-based dynamic graph modelling via contrastive
learning. arXiv preprint arXiv:2105.07944 (2021). 1, 2, 5, 9

[117] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma, Lingfan
Yu, Yu Gai, et al. 2019. Deep graph library: A graph-centric, highly-performant package for graph neural
networks. arXiv:1909.01315 (2019). 8

[118] Xuhong Wang, Ding Lyu, Mengjian Li, Yang Xia, Qi Yang, Xinwen Wang, Xinguang Wang, Ping Cui,
Yupu Yang, Bowen Sun, et al. 2021. Apan: Asynchronous propagation attention network for real-time
temporal graph embedding. In Proceedings of the 2021 international conference on management of data.
2628–2638. 1, 2

[119] Yuke Wang et al. 2021. GNNAdvisor: An Efficient Runtime System for GNN Acceleration on GPUs. In
OSDI. 8

[120] Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. 2021. Inductive representation
learning in temporal networks via causal anonymous walks. arXiv preprint arXiv:2101.05974 (2021). 1,
2, 5, 9

[121] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon. 2019.
Dynamic graph cnn for learning on point clouds. Acm Transactions On Graphics (tog) 38, 5 (2019), 1–12.
8

[122] Chuhan Wu, Fangzhao Wu, Tao Qi, Yongfeng Huang, and Xing Xie. 2021. Fastformer: Additive attention
can be all you need. arXiv preprint arXiv:2108.09084 (2021). 2

[123] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. 2019.
Simplifying graph convolutional networks. In International conference on machine learning. PMLR,
6861–6871. 8

[124] Yidi Wu, Kaihao Ma, Zhenkun Cai, Tatiana Jin, Boyang Li, Chenguang Zheng, James Cheng, and Fan
Yu. 2021. Seastar: vertex-centric programming for graph neural networks. In EuroSys. 8

[125] Zonghan Wu et al. 2020. A comprehensive survey on graph neural networks. IEEE Transactions on
Neural Networks and Learning Systems (2020). 8

[126] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. 2019. Graph wavenet for deep
spatial-temporal graph modeling. arXiv preprint arXiv:1906.00121 (2019). 1

[127] Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. 2020. Inductive
representation learning on temporal graphs. arXiv preprint arXiv:2002.07962 (2020). 1, 2, 9

[128] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826 (2018). 2, 8

[129] Guotong Xue, Ming Zhong, Jianxin Li, Jia Chen, Chengshuai Zhai, and Ruochen Kong. 2022. Dynamic
network embedding survey. Neurocomputing 472 (2022), 212–223. 1, 7

[130] Mingyu Yan, Lei Deng, Xing Hu, Ling Liang, Yujing Feng, Xiaochun Ye, Zhimin Zhang, Dongrui Fan,
and Yuan Xie. 2020. Hygcn: A gcn accelerator with hybrid architecture. In IEEE HPCA. IEEE, 15–29. 8

[131] Bing Yu, Haoteng Yin, and Zhanxing Zhu. 2017. Spatio-temporal graph convolutional networks: A deep
learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875 (2017). 1

15

HOT: Higher-Order Dynamic Graph Representation Learning with Efficient Transformers

[132] Le Yu, Bowen Du, Xiao Hu, Leilei Sun, Liangzhe Han, and Weifeng Lv. 2021. Deep spatio-temporal
graph convolutional network for traffic accident prediction. Neurocomputing 423 (2021), 135–147. 1

[133] Le Yu, Zihang Liu, Tongyu Zhu, Leilei Sun, Bowen Du, and Weifeng Lv. 2022. Modelling Evolutionary
and Stationary User Preferences for Temporal Sets Prediction. arXiv preprint arXiv:2204.05490 (2022).
1

[134] Le Yu, Leilei Sun, Bowen Du, and Weifeng Lv. 2023. Towards Better Dynamic Graph Learning: New
Architecture and Unified Library. arXiv:2303.13047 [cs.LG] 1, 2, 3, 5, 6, 9, 20

[135] Le Yu, Guanghui Wu, Leilei Sun, Bowen Du, and Weifeng Lv. 2022. Element-guided Temporal Graph
Representation Learning for Temporal Sets Prediction. In Proceedings of the ACM Web Conference 2022.
1902–1913. 1

[136] Dalong Zhang et al. 2020. Agl: a scalable system for industrial-purpose graph machine learning. arXiv
preprint arXiv:2003.02454 (2020). 8

[137] Muhan Zhang and Yixin Chen. 2018. Link prediction based on graph neural networks. arXiv preprint
arXiv:1802.09691 (2018). 8

[138] Mengqi Zhang, Shu Wu, Xueli Yu, Qiang Liu, and Liang Wang. 2022. Dynamic graph neural networks
for sequential recommendation. IEEE Transactions on Knowledge and Data Engineering 35, 5 (2022),
4741–4753. 1

[139] Ziwei Zhang, Peng Cui, and Wenwu Zhu. 2020. Deep learning on graphs: A survey. IEEE Transactions
on Knowledge and Data Engineering (2020). 8

[140] Zizhao Zhang, Han Zhang, Long Zhao, Ting Chen, Sercan Ö Arik, and Tomas Pfister. 2022. Nested
hierarchical transformer: Towards accurate, data-efficient and interpretable visual understanding. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36. 3417–3425. 2

[141] Da Zheng, Xiang Song, Chengru Yang, Dominique LaSalle, Qidong Su, Minjie Wang, Chao Ma, and
George Karypis. 2021. Distributed Hybrid CPU and GPU training for Graph Neural Networks on
Billion-Scale Graphs. arXiv:2112.15345 (2021). 8

[142] Jie Zhou et al. 2020. Graph neural networks: A review of methods and applications. AI Open 1 (2020),
57–81. 8

[143] Rong Zhu et al. 2019. Aligraph: A comprehensive graph neural network platform. arXiv preprint
arXiv:1902.08730 (2019). 8

Appendix
A Model Design: Additional Details
We provide more details on the model design.

A.1 Vanilla Transformer
We detail some parts of the vanilla Transformer that are used when constructing the Block-Recurrent
Transformer.

A.1.1 Positional Encoding

Before the sequence arrives at the encoder, it requires positional encoding, such that the Transformer
has a notion of the order of the inputs xi in the input sequence. The original paper suggests the
following transformation of the inputs:

Zi,j = Xi,j +

{
sin

(
i/1000j/d

)
if j even,

cos
(
i/1000(j−1)/d

)
otherwise.

(5)

The matrix Z is then fed into the multi-head self-attention module of the encoder.

A.1.2 Multi-Head Self-Attention

Here, the matrix Z is first projected onto three different matrices Q = ZWQ ∈ Rn×dk , K =
ZWK ∈ Rn×dk and V = ZWV ∈ Rn×dv , where WQ, WK and WV are parameter matrices. The
matrix of outputs is then calculated as follows:

Attention (Q,K, V) = softmax
(
QKT

√
d

)
V (6)

16

HOT: Higher-Order Dynamic Graph Representation Learning with Efficient Transformers

In order to capture information from different representation subspaces we can perform Multi-Head
Attention. In this case, the matrix of outputs is calculated as follows:

MH (Q,K, V) = Concat (head1, . . . , headh)WO (7)

where WO ∈ Rhdv×d, and

headi = Attention
(
QW i

Q,KW i
K , V W i

V

)
(8)

where W i
Q ∈ Rd×dk , W i

K ∈ Rd×dk , W i
V ∈ Rd×dv are parameter matrices.

The output of this module is then added to Z over a residual connection [56] and normalised using
Layer Normalisation [6]. It is then fed into an MLP.

A.1.3 Feed-Forward Network

The MLP consists of a single ReLu-activated hidden layer. It is applied to each element of the
sequence separately. The output is then, as before, added to the output of the previous module over a
residual connection and normalised using Layer Normalisation.

The output of the encoder layer is then fed back into another encoder layer. The number of layers
in the encoder depends on the implementation. The original paper suggests a total of 6 layers.
Afterwards, the output is fed into the decoder, which computes the final output probabilities.

A.2 Block-Recurrent Transformer
A.2.1 Model Overview

The first block within each segment must be able to attend to previous segments. As such, following
an idea from Transformer-XL [37], the model stores the keys and values of the computed state vectors
of the previous segment in cache.

The Block-Recurrent Transformer is composed of various modules called recurrent cells. There are
two types of recurrent cells, vertical cells, which calculate next state vectors, and horizontal cells,
which calculate output token embeddings. These can be stacked in any desired way. The blocks are
fed one by one to the stack of recurrent cells, and the outputs of the last cell are then concatenated to
form the output of the model.

Vertical cell: Just like in the vanilla Transformer, in the vertical recurrent cell, the input token
embeddings undergo self-attention. However, unlike the vanilla Transformer, this type of cell also
employs cross-attention on the input embeddings and the current state vectors, i.e., it computes
attention scores using a query matrix (Q) based on the input embeddings and key and value matrices
(K, V) based on the current state vectors. The results from both attention modules are then projected
to some feature space and added to the input token embeddings over a residual connection. The
resulting values are then fed into an MLP and added to its output to form the output token embeddings.

Horizontal cell: In the horizontal cell the roles of the current state vectors and the input token
embeddings are inverted. While the current state vectors undergo self-attention and contribute to the
cross-attention module with a query matrix (Q), the input token embeddings only contribute to the
cross-attention module with the key and value matrices (K, V). The results of the attention modules
are projected onto some feature space. The resulting values ht are then fed into a group of gates, one
per current state vector ct. Note, that t refers to the index of the current block within the sequence.
Each gate realizes the following computations:

zt = Wzht + bz (9)

g = σ(bg) (10)

ct+1 = ct ⊙ g + zt ⊙ (1− g) (11)

where Wz , bz and bg are trainable parameters, σ is the sigmoid function and ⊙ is the element-wise
multiplication. The outputs of the gates ct+1 are then concatenated to form the next state vectors and
the output of this cell.

17

HOT: Higher-Order Dynamic Graph Representation Learning with Efficient Transformers

A.2.2 Model Details

After constructing the matrix Z, the model feeds it into a Block-Recurrent Transformer consisting
of one horizontal layer and one vertical layer. The matrix Z is divided into segments of size S and
further into blocks of size B. In the following we assume |Z| < S and outline the process undergone
by Z in this case. The general case is described after.

The blocks of Z are fed into the layers of the Block-Recurrent Transformer one by one, starting from
the top of Z. Let Zb be the b-th block in Z. After the predecessors of Zb have been processed, Zb is
fed into the horizontal cell along with the current state vectors C. Here, the state vectors are first
normalized and graced with learned positional embeddings as follows:

C = C +Wp, (12)

where Wp is a trainable parameter.

Next, we extract the keys and values matrices (Kb, Vb) of Zb as follows:

Kb = ZbW
Zb

K and Vb = ZbW
Zb

V , (13)

where WZb

K ∈ R8d×Idk , and WZb

V ∈ R8d×Idv are trainable parameters. These matrices are stored for
later use in the vertical layer as well.

The computation proceeds as follows:

A
(1)
h = MH

(
CW

(1)
Q , CWC

K , CWC
V

)
, (14)

A
(2)
h = MH

(
CW

(2)
Q , [Kb−1;Kb], [Vb−1;Vb]

)
, (15)

where W
(1)
Q ∈ R8d×Idk , WC

K ∈ R8d×Idk , WC
V ∈ R8d×Idv , and W

(2)
Q ∈ R8d×Idk are trainable

parameters, I denotes the number of attention heads, and [∗; ∗] refers to vertical concatenation. If
b = 1, the concatenation is skipped. A(1)

h is the result of self-attention on the current state vector,
while A

(2)
h results from cross-attending the state vectors with the input Zb. Note, that the function

MH refers to the Multi-Head Attention module as described in Section A.1.2.

The matrices A(1)
h and A

(2)
h are then concatenated horizontally and projected to a suitable dimension

as follows:

Ph = (A(1)∥A(2))Wh + bh, (16)

where Wh ∈ R2Idv×8d and bh ∈ R8d are trainable parameters. Subsequently, Ph enters a gating
mechanism along with the current state vectors. There, each state vector is multiplied element-wise
with the sigmoid of a trainable vector bg ∈ R8d, while the rows of Ph are multiplied element-wise
with the vector 1− σ(bg). These are then added together as shown below.

N = C ⊙ σ(bg) + Ph ⊙ (1− σ(bg)), (17)

where ⊙ denotes element-wise multiplication, and σ denotes the sigmoid function. N is now referred
to as the next state vectors and is fed, along with Zb to a vertical cell.

In the vertical cell, the state vectors are first normalized and graced with learned positional embed-
dings as before:

N = N +Wp. (18)

Then, they are processed as follows:

A(3) = MHR
(
ZbW

(3)
Q , [Kb−1;Kb], [Vb−1;Vb]

)
, (19)

18

HOT: Higher-Order Dynamic Graph Representation Learning with Efficient Transformers

A(4) = MH
(
ZbW

(4)
Q , NWC

K , NWC
V

)
, (20)

where W
(3)
Q ∈ R8d×Idk , and W

(4)
Q ∈ R8d×Idk are trainable parameters, and WC

K and WC
V are the

same parameters used to project the state vectors in the horizontal layer. Unlike before, here, the input
Zb undergoes self-attention, while cross-attending with the state vectors extracted from the previous
cell N . Note, that the function MHR refers to a Multi-Head Attention module with Extrapolatable
Position Embeddings [104].

As before, the matrices A(3) and A(4) are concatenated horizontally and projected to a suitable
dimension:

Pv = (A(3)∥A(4))Wv + bv, (21)

where Wv ∈ R2Idv×8d and bv ∈ R8d are trainable parameters. Zb is then added to Pv over a residual
connection. The resulting matrix is fed into an FFNGEGLU [98] and added to its output over a
residual connection:

Ob = FFNGEGLU (Pv + Zb) + Pv + Zb. (22)

Ob is the output of the Block-Recurrent Transformer for the block Zb.

If Z can be divided into multiple segments, then the keys and values of the last block of the first
segment are cached to be utilised by the first block of the second segment, and so on.

The outputs of all blocks O1, . . . , OB are then concatenated vertically:

H = [O1; . . . ;OB] ∈ Rmax{lu,lv}×8d. (23)

Average Pooling: The dout-dimensional node representations of u and v are finally extracted from
H:

hu = Mean (H[:, : 4d])Wout + bout ∈ Rdout , (24)

hv = Mean (H[:, 4d :])Wout + bout ∈ Rdout , (25)

where Wout ∈ R4d×dout and bout ∈ Rdout are trainable parameters, and dout is the output dimension.

A.3 Decoder
We inherit the decoders for the two downstream tasks, dynamic link prediction and dynamic node
classification, from DyGLib. For dynamic link prediction, the decoder is a simple MLP with one
ReLu-activated hidden layer. For dynamic node classification, the decoder is an MLP with two
ReLu-activated hidden layers. The outputs of both decoders are just one value.

B Evaluation Methodology: Additional Details
B.1 Evaluation Metrics
We use two metrics: the Average Precision (AP) and the Area Under the ROC (AUC).

In AP, the model being evaluated outputs a probability p for each query. The threshold τ is the
probability at which the predictions are considered positive, i.e., for p ≥ τ the query is considered
positive, while for p < τ the query is considered negative. Average Precision is given by AP =
1
N

∑N
i=1 (r(τi)− r(τi−1)) p(τi), where p(τi) and r(τi) are the precision and recall values for the

classifier with threshold τi. We set r(τ0) = 0. We use scikit’s [85] implementation of this metric.

Area Under the ROC (AUC-ROC): The ROC curve plots recall against the false positive rate at
various classification thresholds. AUC-ROC measures the area under the ROC curve, where higher
scores are desirable. Intuitively, one can think of AUC-ROC as the probability that the model can
distinguish a random positive sample from a random negative sample. Again, we use scikit’s [85]
implementation of this metric.

19

HOT: Higher-Order Dynamic Graph Representation Learning with Efficient Transformers

B.2 Design Details
Our implementation is integrated into DyGLib [134]. Our implementation of BRT is heavily based
on Phil Wang’s implementation, which can be found under the following link: https://github.
com/lucidrains/block-recurrent-transformer-pytorch/tree/main.

B.3 Model Parameters
We split the datasets into train, val, and test by the ratio of 70%-15%-15%. We set the mini-batch
size to 100, and use the Adam optimizer [67]. We use a learning rate of 0.0001, and train for 50
epochs. We employ early stopping with a patience of either 0 or 2 depending on the dataset. The node
mini-batch sampling is done sequentially in order to follow the chronological order of the interactions.
Other model parameters are as follows:

• Dimension of aligned encoding d: 50
• Dimension of time encoding dT : 100
• Dimension of neighbor co-occurrence encoding dC : 50
• Dimension of output representation dout: 172
• Number of BRT cells: 2
• Position of the BRT horizontal cell: 1
• Number of attention heads I: 4
• BRT block size: 16
• BRT segment size: 32
• BRT number of state vectors: 32

Our methodology for hyperparameter selection follows DyGLib, an established library and bench-
marking infrastructure for dynamic graph learning [134]. The values used for the parameter s2
(defined in 3.3) were found by means of a grid search over the universe {0, 1} for the datasets MOOC
and LastFM, and over {0, 1, 2, 4} for the dataset CanParl. These universes were chosen so as to test
the model both with and without higher order structures. In the latter case, we keep the amount of
considered 2-hop interactions low (in the order of magnitude of the amount of 1-hop interactions s1).
This allows us to consider higher order structures while avoiding adding potential noise. Finer tuning
was limited by the available compute resources.

B.4 Dataset Details
The details of the datasets illustrated in Section 4 as well as dataset dependent parameters are in
Table 1.

Data Interactions Sequence length Patch size Dropout rate Patience

MOOC 411,749 256 8 0.1 2
LastFM 1,293,103 512 16 0.1 0
Can. Parl. 74,478 2048 64 0.1 2

Table 1: Overview of model configurations over various datasets.

20

https://github.com/lucidrains/block-recurrent-transformer-pytorch/tree/main
https://github.com/lucidrains/block-recurrent-transformer-pytorch/tree/main

	1 Introduction
	2 Background
	3 The HOT Model
	3.1 Extracting Higher-Order Neighbors
	3.2 Constructing Input Feature Matrices
	3.3 Encoding Higher-Order Neighbor Interactions
	3.4 Patching, Alignment, Concatenation
	3.5 Harnessing Temporal Hierarchy with Block-Recurrent Transformer
	3.6 Computational Cost

	4 Evaluation
	4.1 Experimental Setup
	4.2 Analysis of Performance
	4.3 Analysis of Higher-Order (HO) Characteristics
	4.4 Analysis of Memory Consumption

	5 Discussion
	5.1 Applications of HOT Beyond Link Prediction
	5.2 Limitations of HOT

	6 Related Work
	7 Conclusion
	A Model Design: Additional Details
	A.1 Vanilla Transformer
	A.1.1 Positional Encoding
	A.1.2 Multi-Head Self-Attention
	A.1.3 Feed-Forward Network

	A.2 Block-Recurrent Transformer
	A.2.1 Model Overview
	A.2.2 Model Details

	A.3 Decoder

	B Evaluation Methodology: Additional Details
	B.1 Evaluation Metrics
	B.2 Design Details
	B.3 Model Parameters
	B.4 Dataset Details

