Scaling Betweenness Centrality using Communication-Efficient Sparse Matrix Multiplication

Edgar Solomonik1,2, Maciej Besta1, Flavio Vella1, and Torsten Hoefler1

1 Department of Computer Science
ETH Zurich

2 Department of Computer Science
University of Illinois at Urbana-Champaign

\texttt{LPNA@CS@Illinois}
Centrality in Graphs

Betweenness centrality – For each vertex v in $G = (V, E)$, sum the fractions of shortest paths $s \sim t$ that pass through v,

$$\lambda(v) = \sum_{s,t \in V} \frac{\sigma_v(s, t)}{\sigma(s, t)}.$$

- $\sigma(s, t)$ is the number (multiplicity) of shortest paths $s \sim t$
- $\sigma_v(s, t)$ is the number of shortest paths $s \sim t$ that pass through v
- Shortest paths can be unweighted or weighted
- Centrality is important in analysis of biology, transport, and social network graphs
Path Multiplicities

- Let $d(s, t)$ be the shortest distance between vertex s and vertex t
- The multiplicity of shortest paths $\sigma(s, t)$ is the number of distinct paths $s \sim t$ with distance $d(s, t)$
- If v is in some shortest path $s \sim t$, then
 \[
d(s, t) = d(s, v) + d(v, t)\]
- Consequently, can compute all $\sigma_v(s, t)$ and $\lambda(v)$ given all distances

\[
\sigma_v(s, t) = \begin{cases}
\sigma(s, v)\sigma(v, t) & : d(s, t) = d(s, v) + d(v, t) \\
0 & : \text{otherwise}
\end{cases}
\]
Betweenness Centrality by All-Pairs Shortest-Paths

- We can obtain $d(s, t)$ for all s, t by all-pairs shortest-paths (APSP).
- Multiplicities (σ and σ_v for each v) are easy to get given distances.
- However, the cost of APSP is prohibitive, for n-node graphs:
 - $Q = \Theta(n^3)$ work with typical algorithms (e.g. Floyd-Warshall).
 - $D = \Theta(\log(n))$ depth\(^1\)
 - $M = \Theta(n^2/p)$ memory footprint per processor.
- **APSP does not effectively exploit graph sparsity**

Brandes’ Algorithm for Betweenness Centrality

Ulrik Brandes proposed a **memory-efficient** method\(^1\)

- Compute \(d(s, \star)\) and \(\sigma(s, \star)\) for a given source vertex \(s\)
- Using these calculate **partial centrality factors** \(\zeta(s, v)\) so

\[
\zeta(s, v) = \sum_{t \in V, d(s, v) + d(v, t) = d(s, t)} \frac{\sigma(v, t)}{\sigma(s, t)}
\]

- Construct the centrality scores from partial centrality factors

\[
\lambda(v) = \sum_s \sigma(s, v) \zeta(s, v)
\]

If any multiplicity $\sigma(s, t) > 1$, shortest path tree has cross edges.
Shortest Path Tree Multiplicities

\[\sigma(s, v) \] value displayed for each node \(v \) given colored source vertex \(s \)
Partial Centrality Factors in Shortest Path Tree

betweenness centrality back-propagation

If \(\pi(s, v) \) are the children of \(v \) in shortest path tree from \(s \)

\[
\zeta(s, v) = \sum_{c \in \pi(s, v)} \left(\frac{1}{\sigma(s, c)} + \zeta(s, c) \right)
\]
Brandes’ Algorithm Overview

- For each source vertex $s \in V$ (or a batch of source vertices)
- Compute single-source shortest-paths (SSSP) from s
 - For unweighted graphs, use breadth first search (BFS)
 - More viable choices for weighted graphs: Dijkstra, Bellman-Ford, Δ-stepping, ...
- Perform back-propagation of centrality scores on shortest path tree from s
 - Roughly as hard as BFS regardless of whether G is weighted
Parallelism in Brandes’ Algorithm

Sources of parallelism in Brandes’ algorithm:

- Computation of SSSP and back-propagation
 - Concurrency and efficiency like BFS on graphs
 - Bellman-Ford provides maximal concurrency for weighted graphs at cost of extra work

- Different source vertices can be processed in parallel as a batch
 - Key additional source of concurrency
 - Maintaining more distances requires greater memory footprint, $M = \Omega(bn/p)$ for batch size b
Algebraic shortest path computations

Tropical (geodetic) semiring

- additive (idempotent) operator: \(a \oplus b = \min(a, b) \), identity: \(\infty \)
- multiplicative operator: \(a \otimes b = a + b \), identity: 0
- matrix multiplication defined accordingly,

\[
C = A \otimes B \quad \Rightarrow \quad c_{ij} = \min_k (a_{ik} + b_{kj})
\]
Algebraic shortest path computations

Tropical (geodetic) semiring

- additive (idempotent) operator: \(a \oplus b = \min(a, b) \), identity: \(\infty \)
- multiplicative operator: \(a \otimes b = a + b \), identity: \(0 \)
- matrix multiplication defined accordingly,

\[
C = A \otimes B \quad \Rightarrow \quad c_{ij} = \min_k (a_{ik} + b_{kj})
\]

Bellman-Ford algorithm (SSSP) for \(n \times n \) adjacency matrix \(A \):

1. initialize \(\mathbf{v}^{(1)} = (0, \infty, \infty, \ldots) \)
2. compute \(\mathbf{v}^{(n)} \) via recurrence

\[
\mathbf{v}^{(i+1)} = \mathbf{v}^{(i)} \oplus (A \otimes \mathbf{v}^{(i)})
\]
Algebraic View of Brandes’ Algorithm

- Given frontier vector $x^{(i)}$ and tentative distances $w^{(i)}$

 $$y^{(i)} = A \otimes x^{(i)} \quad \text{and} \quad w^{(i+1)} = w^{(i)} \oplus y^{(i)}$$

- $x^{(i+1)}$ given by entries if $w^{(i+1)}$ that differ from $w^{(i)}$

- For BFS, each tentative distance changes only once

- For Bellman-Ford, tentative distances can change multiple times

- Thus both algorithms require iterative SpMSpV

- Having a batch size $b > 1$ transforms the problem to sparse matrix multiplication (SpGEMM or SpMSpM)
Let the **bandwidth cost** W be the maximum amount of data communicated by any processor.

We use analogue of 1D/2D/3D rectangular matrix multiplication.

The bandwidth cost of matrix multiplication $Y = AX$ is then

$$W = \min_{p_1p_2p_3 = p} \left[\frac{\text{nnz}(A)}{p_1p_2} + \frac{\text{nnz}(X)}{p_2p_3} + \frac{\text{nnz}(Y)}{p_1p_3} \right]$$

In our context, $\text{nnz}(A) = |E| = m$, while X holds current frontiers for b starting vertices, so $\text{nnz}(X) \leq nb$.
Communication Avoiding Betweenness Centrality

- Latency cost is proportional to number of SpMSpM calls
- Replication of A for SpMSpMs minimizes bandwidth cost W
- It then suffices to communicate frontiers X and reduce results Y
- For undirected graphs, for b starting vertices, total nonzeros in X over all iterations is nb and for Y is $O(nb)$
- Best choice of b with sufficient memory gives
 \[W = O(n\sqrt{m}/p^{2/3}) \]
- Memory-limited communication cost bound given in paper
Cyclops Tensor Framework (CTF) ¹

- Distributed-memory symmetric/sparse tensors in C++ or Python
- For betweenness centrality, we only use CTF matrices

```cpp
Matrix<int> A(n, n, AS|SP, World(MPI_COMM_WORLD));
A.read(...); A.write(...); A.slice(...); A.permute(...);
```

- Matrix **summation** in CTF notation is

  ```cpp
  B["ij"] += A["ij"];
  ```

- Matrix **multiplication** in CTF notation is

  ```cpp
  Y["ij"] += T["ik"]*X["kj"];
  ```

- **Used-defined elementwise functions** can be used with either

  ```cpp
  Y["ij"] += Function<>()([](double x){ return 1/x; })(X["ij"]);
  Y["ij"] += Function<int,double,double>(...)(A["ik"],X["kj"]);
  ```

¹E. Solomonik, D. Matthews, J. Hammond, J. Demmel, JPDC 2014
CTF Code for Betweenness Centrality

```cpp
void btwn_central(Matrix<int> A, Matrix<path> P, int n){
    Monoid<path> mon(...,
        [](path a, path b){
            if (a.w<b.w) return a;
            else if (b.w<a.w) return b;
            else return path(a.w, a.m+b.m);
        }, ...);

    Matrix<path> Q(n,k,mon); // shortest path matrix
    Q["ij"] = P["ij"];

    Function<int,path> append([](int w, path p){
        return path(w+p.w, p.m);
    });

    for (int i=0; i<n; i++)
        Q["ij"] = append(A["ik"],Q["kj"]);
    ...
}
```
Symmetry and Sparsity by Cyclicity

A **cyclic** layout provides

- preservation of packed symmetric storage format
- **load balance** for sparse 1D/2D (vertex/edge) graph blocking
- **obliviousness** with respect to **graph structure/topology**
Data Mapping and Autotuning

The CTF workflow is as follows

- All operations executed bulk synchronously
- For each product, matrices can be redistributed globally
- Arbitrary sparsity supported via compressed-sparse-row (CSR)
 - Modularity permits alternative sparse matrix representations
- Performance model used to select best contraction algorithm
 - Leverages randomized distribution of nonzeros (edges)
 - Model coefficients tuned using linear regression
- Layout and algorithm choices are made at runtime using model
CTF Performance for Betweenness Centrality

- Implementation uses CTF SpGEMM adaptively with **sparse** or **dense output (push or pull)**
- We compare with **CombBLAS**, which uses semirings and BFS (unweighted only)

Friendster has 66 million vertices and 1.8 **billion edges** (results on Blue Waters, Cray XE6)
Conclusions and Future Work

- Summary of algorithmic contributions
 - Parallel **communication-avoiding** betweenness centrality algorithm
 - **Better** sparse matrix multiplication for unbalanced nonzero counts
 - Algorithms and implementation general to **weighted** graphs

- Future work
 - Use of Δ-stepping or other more work-efficient SSSP algorithms
 - Optimizations in conjunction with approximation algorithms

Cyclops Tensor Framework

- Graphs are **one of many applications**, other highlights include
 - **Petascale** high-accuracy quantum chemistry
 - **56-qubit** (largest ever) quantum computing simulation

- Already provides most functionality proposed in GraphBLAS 1, plus all of that for tensors (hypergraphs with uniform size nets)
Sparse tensor application: strong scaling

We study the time to solution of the sparse MP3 code, with

1) dense V and T
2) sparse V and dense T
3) sparse V and sparse T

Strong scaling of MP3 with $n_0=40$, $n_v=160$
Sparse tensor application: weak scaling

We study the scaling to larger problems of the sparse MP3 code, with (1) dense V and T (2) sparse V and dense T (3) sparse V and T.
Data mapping and autotuning

Transitions between contractions require redistribution and refolding

- Base distribution for each tensor
 - default over all processors
 - or user can specify any processor grid mapping

- To contract, tensor is redistributed globally and matricized locally

- Arbitrary sparsity supported via compressed-sparse-row (CSR)

- Performance model used to select best contraction algorithm