

spcl.inf.ethz.ch

Network topologies for large-scale compute centers: It's the diameter, stupid!

TORSTEN HOEFLER

with support of Maciej Besta @ SPCL presented at Hot Interconnects 2016, San Jose, CA, USA

ETH zürich

50% [1]

spcl.inf.ethz.ch

Š 33% [2]

[1] D. Abts et al. (2010), Energy Proportional Datacenter Networks, ISCA'10
[2] J. Kim et al. (2007), Flattened Butterfly: A Cost-Efficient Topology for High-Radix Networks, ISCA'07

2014

A BRIEF HISTORY OF NETWORK TOPOLOGIES

copper cables, small radix switches

fiber, high-radix switches

copper cables, small radix switches

fiber, high-radix switches

copper cables, small radix switches

high-radix switches

A BRIEF HISTORY OF NETWORK TOPOLOGIES

copper cables, small radix switches

copper cables, small radix switches

fiber, high-radix switches

2010 18th IEEE Symposium on High Performance Interconnects

The PERCS High-Performance Interconnect

Baba Arimilli *, Ravi Arimilli *, Vicente Chung *, Scott Clark *, Wolfgang Denzel [†], Ben Drerup *, Torsten Hoefler [‡], Jody Joyne *, Jerry Lewis *, Jian Li [†], Nan Ni * and Ram Rajanon [†]
 * IBM Systems and Technology Group, 11501 Burnet Road, Austin, TX 78758
 [†] IBM Research (Austin, Zurich), 11501 Burnet Road, Austin, TX 78758
 [‡] Blue Waters Directorate, NCSA, University of Illinois at Urbana-Champaign, Urbana, IL 61801
 E-mail: arimilli@us.ibm.com, rajamony@us.ibm.com, htor@illinois.edu

Abstract—The PERCS system was designed by IBM in response to a DARPA challenge that called for a high-productivity high-performance computing system. A major innovation in the PERCS design is the network that is built using Hub chips that are integrated into the compute nodes. Each Hub chip is about 580 mm² in size, has over 3700 signal I/Os, and is packaged in a module that also contains LGA-attached optical electronic devices.

The Hub module implements five types of high-bandwidth interconnects with multiple links that are fully-connected with a high-performance internal crossbar switch. These links provide over 9 Thits/second of raw bandwidth and are used to construct a two-level direct-connect tonolexy snaming un to ters of thoubandwidths do not scale accordingly. For instance, while High Performance Linpack performance [5], [10] shows a steady improvement over time, interconnect-intensive metrics such as G-RandomAccess and G-FFTE [5] show very little improvement.

The challenge of building a high-performance, highly productive, multi-Petaflop system forced us to recognize early on that the entrie infrastructure had to scale along with the microprocessor's capabilities. A significant component of our scaling solution is a new switchless interconnect with verv high fancet organized into a two-level direct connect

copper cables, small radix switches

fiber, high-radix switches

Key ideas:

"It's the diameter, stupid"

Lower diameter: → Less cables traversed → Less cables needed

 \rightarrow Less routers needed

Cost and energy savings: → Up to 50% over Fat Tree → Up to 33% over Dragonfly

EXAMPLE: FULL-BANDWIDTH FAT TREE VS HOFFMAN-SINGLETON GRAPH

[1] Hoffman, Alan J.; Singleton, Robert R. (1960), Moore graphs with diameter 2 and 3, IBM Journal of Research and Development

spcl.inf.ethz.ch Ƴ @spcl_eth

DESIGNING AN EFFICIENT NETWORK TOPOLOGY

Optimize towards the Moore Bound [1]: the upper bound on the *number of vertices* in a graph with given *diameter D* and *radix k*.

$$MB(D,k) = 1 + k + k(k-1) + k(k-1)^{2} + \cdots$$

$$MB(D,k) = 1 + k \sum_{i=0}^{D-1} (k-1)^{i}$$

[1] M. Miller, J. Siráň. Moore graphs and beyond: A survey of the degree/diameter problem, Electronic Journal of Combinatorics, 2005.

CONNECTING ROUTERS: DIAMETER 2

Example Slim Fly design for *diameter* = 2: *MMS graphs* [1]

[1] B. D. McKay, M. Miller, and J. Siráň. A note on large graphs of diameter two and given maximum degree. Journal of Combinatorial Theory, Series B, 74(1):110 – 118, 1998

spcl.inf.ethz.ch Ƴ @spcl_eth

DESIGNING AN EFFICIENT NETWORK TOPOLOGY

CONNECTING ROUTERS: DIAMETER 2

Groups form a fully-connected bipartite graph

CONNECTING ROUTERS: DIAMETER 2

Select a prime power q

 $q = 4w + \delta;$ $w \in \mathbb{N}$ $\delta \in \{-1,0,1\},\$

A Slim Fly based on q: Number of routers: $2q^2$ Network radix: $(3q - \delta)/2$ 2 Construct a finite field \mathcal{F}_q . Assuming *q* is prime: $\mathcal{F}_q = \mathbb{Z}/q\mathbb{Z} = \{0, 1, \dots, q-1\}$

with modular arithmetic.

E Example: q = 5

50 routers network radix: 7

 $\mathcal{F}_5 = \{0, 1, 2, 3, 4\}$

CONNECTING ROUTERS: DIAMETER 2

CONNECTING ROUTERS: DIAMETER 2

5 Build Generator Sets

$$X = \{1, \xi^2, ..., \xi^{q-3}\}$$

 $X' = \{\xi, \xi^3, ..., \xi^{q-2}\}$

Example: q = 5 $\mathcal{F}_5 = \{0, 1, 2, 3, 4\}$ $\xi = 2$ $1 = \xi^4 \mod 5 =$ $2^4 \mod 5 = 16 \mod 5$ $X = \{1, 4\}$ $X' = \{2, 3\}$

CONNECTING ROUTERS: DIAMETER 2

6 Intra-group connections

Two routers in one group are connected iff their "vertical Manhattan distance" is an element from:

 $X = \{1, \xi^2, ..., \xi^{q-3}\} \text{ (for subgraph 0)}$ $X' = \{\xi, \xi^3, ..., \xi^{q-2}\} \text{ (for subgraph 1)}$

E Example:
$$q = 5$$

Take Routers (0,0,.)
 $X = (14)$

CONNECTING ROUTERS: DIAMETER 2

6 Intra-group connections

Two routers in one group are connected iff their "vertical Manhattan distance" is an element from:

 $X = \{1, \xi^2, ..., \xi^{q-3}\} \text{ (for subgraph 0)}$ $X' = \{\xi, \xi^3, ..., \xi^{q-2}\} \text{ (for subgraph 1)}$

E Example:
$$q = 5$$

Take Routers (1,4,.)
 $X' = \{2,3\}$

CONNECTING ROUTERS: DIAMETER 2

7 Inter-group connections Router $(0, x, y) \leftrightarrow (1, m, c)$ iff y = mx + c

Example:
$$q = 5$$

Take Router (1,0,0)
 $(1,0,0) \leftrightarrow (0, x, 0)$
Take Router (1,1,0) $m = 1, c = 0$
 $(1,0,0) \leftrightarrow (0, x, x)$

(1,0,0) (1,1,0)-W <u>–</u>2) $\mathbf{\tilde{\mathbf{C}}}$ -M E <u>–</u>2) کھ \square <u>I</u> <u></u> ((e <u>–</u>2)) () کھ <u>–</u>2) () <u>–</u> <u>–</u>M) () 16-() le-Ĩ <u>~</u>@ <u>–</u>2) <u>–</u>2)) <u>–</u>2)) (a) (a)2 <u>I</u> <u></u> () ſ <u>–</u>) <u>–</u>J) کھ (e <u>–</u>))

ATTACHING ENDPOINTS: DIAMETER 2

- How many endpoints do we attach to each router?
- As many to ensure *full global bandwidth:*
 - Global bandwidth: the theoretical cumulative throughput in all-to-all in a steady state

ATTACHING ENDPOINTS: DIAMETER 2

1 Get load / per router-router channel (average number of routes per channel)

 $l = \frac{\text{total number of routes}}{\text{total number of channels}}$

spcl.inf.ethz.ch

COST COMPARISON

COST MODELS: VARIANTS

COST COMPARISON CABLE COST MODEL

*Prices based on:

Cable cost as a function of distance

- The functions obtained using linear regression*
- Optical transceivers considered
- Cables used: Mellanox IB FDR10 40Gb/s QSFP
- Other used cables:

Mellanox IB QDR 56Gb/s QSFP

Mellanox Ethernet 10Gb/s SFP+

Mellanox Ethernet 40Gb/s QSFP

Elpeus Ethernet 10Gb/s SFP+

COST COMPARISON ROUTER COST MODEL

- The function obtained using linear regression*
- Routers used:

Mellanox IB FDR10

Mellanox Ethernet 10/40 Gb

*Prices based on: COLFAX DIRECT

spcl.inf.ethz.ch

COST COMPARISON

RESULTS

Variant 2:

SF less expensive than DF by ~13% (Mellanox IB routers) up to ~39% (Mellanox Ethernet routers)

ETHzürich

COST & POWER-COMPARISON DETAILED CASE-STUDY

• A Slim Fly with;

spcl.inf.ethz.ch

@spcl eth

- *N* = 10,830
- *k* = 43

S / WINT

• $N_r = 722$

ETHzürich

spcl.inf.ethz.ch

COST & POWER COMPARISON DETAILED CASE-STUDY: HIGH-RADIX TOPOLOGIES

Topology	Fat tree	Random	Flat. Butterfly	Dragonfly	Slim Fly
Endpoints (N)	19,876	40,200	20,736	58,806	10,830
Routers (N_r)	2,311	4,020	1,728	5,346	722
Radix (k)	43	43	43	43	43
Electric cables	19,414	32,488	9,504	56,133	6,669
Fiber cables	40,215	33,842	20,736	29,524	6,869
Cost per node [\$]	2,346	1,743	1,570	1,438	1,033
Power per node [W]	14.0	12.04	10.8	10.9	8.02

Topology	Fat tree	Random	Flat. Butterfly	Dragonfly	Slim Fly
Endpoints (N)	10,718	9,702	10,000	9,702	10,830
Routers (N_r)	1,531	1,386	1,000	1,386	722
Radix (k)	35	28	33	27	43
Electric cables	7,350	6,837	4,500	9,009	6,669
Fiber cables	24,806	7,716	10,000	4,900	6,869
Cost per node [\$]	2,315	1,566	1,535	1,342	1,033
Power per node [W]	14.0	11.2	10.8	10.8	8.02

STRUCTURE ANALYSIS

RESILIENCY

- Disconnection metrics
- Other studied metrics:
 - Average path length (increase by 2);
 SF is 10% more resilient than DF

Number of endpoints	Torus3D	Torus5D	Hypercube	Long Hop	Fat tree	Dragonfly	Flat. Butterfly	Random	Slim Fly
512	30%	-	40%	55%	35%	-	55%	60%	60%
1024	25%	40%	40%	55%	40%	50%	60%	-	-
2048	20%	-	40%	55%	40%	55%	65%	65%	65%
4096	15%	-	45%	55%	55%	60%	70%	70%	70%
8192	10%	35%	45%	55%	60%	65%	-	75%	75%

"-" means that a given topology does not have a variant of a given size

spcl.inf.ethz.ch

PERFORMANCE & ROUTING

MINIMUM ROUTING

- Path of length 1 or 2 between two routers
- 2 Inter-group connections (different types of groups)
- Between two routers

Path of length 2 between two routers

PERFORMANCE & ROUTING

RANDOM UNIFORM TRAFFIC

EHzürich

spcl.inf.ethz.ch

ETHzürich

