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Serverless Functions & High Performance: Challenges, Restrictions, Opportunities

@D How to build serverless
@D services?

How can functions improve A
the efficiency of HPC systems?

Can functions communicate
efficiently in Faa$S?

How does serverless performance
look like? Can we measure it?

Ja

Can we make serverless
Invocations fast?

How to make the programming
model more efficient?

A]'ASeBS, the Serverless Benchmark Suite

3'?5 FMI, Serverless Communication

Bringing direct and collective communication to serverless with MPl-compatible interface.

Understanding FaaS performance with a representative and standardized benchmark suite.
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~=P Website and utility functions. .
~=P Multimedia processing. P pgthOﬂ
~=P Machine learning inference. n‘dc @
~aP Serverless workflows. @
~=p Communication benchmarks.
Insights Into Serverless Performance

~=P Scientific applications.
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FaaS Without FMI

Data moved through
storage and caches
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FaaS With FMI

NAT Hole Punching

FMI Collectives on AWS Lambda
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~* Performance overheads of FaaS are not ~» Container eviction policies are agnostic to e 2
uniformly distributed across application types. function properties. I =
~» Transition from a VM to serverless can be ~» We derive analytical models of container / \ %
accompanied by significant performance losses. recycling. Data moved directly S
~ Static billing and allocation policies for 1/0 and CPU over TCP. %
lead to large resource waste. ) S

Functions

Using RDMA and leases for FaaSt invocations in HPC.

Optimized Invocation Path in rFaa$S

Co-locating HPC workloads and functions targets nodes with short availability and improves system utilization.

HPC Node - Tightly Coupled Hardware

Hardware Disaggregated Data Center

allocation and invocation.

rFaaS Invocations on HPC Cluster
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Colocating Memory Sharing Functions with Batch Workloads
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Offloading HPC to Functions

rFaaS versus OpenWhisk and nightcore (cluster) and AWS Lambda (cloud).
) Round-trip latency of invoking a no-op function.
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Paper preprint.

Path from server-centric deployment to FaaS on the example of a complex service: ZooKeeper.
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~=p Compute and storage coupled in a server.
~aP Persistent allocations.

5 x t3.small
7 x t3.small

9 x t3.small

0.85
1.18
1.52

2.03
3.38
4.73
6.09

3 x t3.medium

5 x t3.medium

Serverless

7 x t3.medium

~= Difficult scaling. . @
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~=) Disaggregated compute and storage.
~=P Flexible resource allocation.
~=P Scale down to zero.
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ZooKeeper configuration.
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Requests per day.

Cost ratio of ZooKeeper and FaaSKeeper, 90% reads.
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Communication State Invoke Serverless Function
A m&mMillisecond latency of
~—=___ ' " cloud proxies.

A Serverless Process
TITTT Microsecond latency of
IPC PraaS backend.
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Serverless shines in low op/s scenarios.

" Paper preprint.

Accessing local
state in process
is faster than
using remote
cloud storage.

Serverless process: introducing new abstraction to improve data locality and integration.

Praa$S Data Plane vs Lambda.
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Invoking function
in the same (local)
and another (remote)
process is more
efficient than Faa$S |
Invocations. T ke S fgEE | S
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Reduction Benchmark: Praa$S State vs S3.
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