High-Performance Serverless
for HPC and Clouds

Marcin Copik
Torsten Hoefler (advisor)

Serverless Functions & High Performance: Challenges, Restrictions, Opportunities

@D How to build serverless
@D services?

How can functions improve A
the efficiency of HPC systems?

Can functions communicate
efficiently in Faa$S?

How does serverless performance
look like? Can we measure it?

Ja

Can we make serverless
Invocations fast?

How to make the programming
model more efficient?

A]'ASeBS, the Serverless Benchmark Suite

3'?5 FMI, Serverless Communication

Bringing direct and collective communication to serverless with MPl-compatible interface.

Understanding FaaS performance with a representative and standardized benchmark suite.

uncions Piatorms
~=P Website and utility functions. .
~=P Multimedia processing. P pgthOﬂ
~=P Machine learning inference. n‘dc @
~aP Serverless workflows. @
~=p Communication benchmarks.
Insights Into Serverless Performance

~=P Scientific applications.
A $ e

FaaS Without FMI

Data moved through
storage and caches

=N\
EN «=9¢= N

/
FaaS With FMI

NAT Hole Punching

FMI Collectives on AWS Lambda

—1— S8

—— Redis —f— TCP

allreduce bcast gather

A<D @

&% Openwhisk

X

X

Communication Time [ms]

oI £ 10
~* Performance overheads of FaaS are not ~» Container eviction policies are agnostic to e 2
uniformly distributed across application types. function properties. I =
~» Transition from a VM to serverless can be ~» We derive analytical models of container / \ %
accompanied by significant performance losses. recycling. Data moved directly S
~ Static billing and allocation policies for 1/0 and CPU over TCP. %
lead to large resource waste.) S

Functions

Using RDMA and leases for FaaSt invocations in HPC.

Optimized Invocation Path in rFaa$S

Co-locating HPC workloads and functions targets nodes with short availability and improves system utilization.

HPC Node - Tightly Coupled Hardware

Hardware Disaggregated Data Center

allocation and invocation.

rFaaS Invocations on HPC Cluster

with aggregated

| Z[GPU]

Colocating Memory Sharing Functions with Batch Workloads

_Faas' COI:\tI’Ol. pl'_ane InV0lve9unction invoke invoke High-speed Disaggregated
in every invocation. oecutor 8 & 4_60 network resources
Control T\ F br?:)vc\I,eeSen with on-demand
Plane c N c N - i
rFaaS: serverless leases | / \ / \i allocation.
decouple resource ent Homogeneous Dedicated
S Cold @& Warm nodes edicate

Interconnect for

allocate lease compute notify thread active poll remote resource
& OQ “@’) : Qo resources. I i dCCess.
Executor — > > = =]
Ty 1 £[GPU]:= Disaggregated

Manager ; 5 > Deploy on T . .

/ \/ \ o computing with

Client > — > existing HPC | =5 serverless functions
2% Cold & Warm | -@: Hot systems. 1 [GPU]:

on remote resources.

Offloading HPC to Functions

rFaaS versus OpenWhisk and nightcore (cluster) and AWS Lambda (cloud).
) Round-trip latency of invoking a no-op function.
10 . ' LULESH
OpenWhisk: 119.18 ms '\? Slowdown of the batch job LULESH. ablen Sz Blackscholes, OpenMP
2 _ = 15 30 P
= o4 ‘ 10 BE =i | — 18 _ Performance boost ot
Q Lot 4 o, N H “H | H ﬂ T P 20 E through idle resources. ,—
[' Sl
= AWS: 19.64 ms OP 2 i \ ﬂ | W ll gl 20 "
. . = S Q_ ® @
'.g 10° ;ﬂghtcore. J— 1 50° 4010 9500 g0 0,00 250 M50 M1 17 50 40 1% 95 10 ¢ %, 00 %50 My00 -g / @ﬂésﬁ'
- _ . kCore _ Slowdown of the batch job MILC. 9 10 /‘ ,¢s¢‘
10 Warm: 9.3 us mo < 20 Overhead below 7.5% when serving 1 GB/s. MILC v o o—o :
o > - Q s rFaaS on par with
* Hot: 5.3 u O / problem size n 0/0%./ OpenMP
101 AU rFaaS: 12 GB/s, RDMA ® 10 l mm 32 = P
“~ 2 ‘ = & 0
1 2 4 8 16 32 64 128 256 512 10242048 5120 g o alll § 1 E 3L 00 il sl sl N gl e 51928 1 4 8 1|23 1|€|5 |' 20 24 28 32
Message size [kB — arallelism
J LkB] 10 50 40 0 95 © g0 M, 50 M50 W00 P L I 50 (o 0% 5 M5 0 0 10 g0 %, g0 ©°
Activity of the co-located remote memory function: read (left) and write (right). —e— OpenMP —e¢— rFaaS —e— OpenMP + rFaaS

IPDPS ‘23 paper. ‘ ’spcl/rFaaS

Paper preprint.

Path from server-centric deployment to FaaS on the example of a complex service: ZooKeeper.

1.01
1.69
2.37
3.04

3 x t3.small

“Serverful”

~=p Compute and storage coupled in a server.
~aP Persistent allocations.

5 x t3.small
7 x t3.small

9 x t3.small

0.85
1.18
1.52

2.03
3.38
4.73
6.09

3 x t3.medium

5 x t3.medium

Serverless

7 x t3.medium

~= Difficult scaling. . @
& Aﬁ
‘s
[—

O x t3.medium | &0}t

1ol
1.69
287
3.04

~=) Disaggregated compute and storage.
~=P Flexible resource allocation.
~=P Scale down to zero.

o spcl/FaaSKeeper

4.06
6.76
9.47
12.18

3 x t3.large

ZooKeeper configuration.

[SNZ:m 13.53
Zayitl 18.94
IVANWEY 24.35

allocations —|
Increase data

7 x t3.large

e

9 x t3.large

500K 1M

2.03
3.38
4.73
6.09

2M

Requests per day.

Cost ratio of ZooKeeper and FaaSKeeper, 90% reads.

120.0

0S Process
a‘ O a Nano- and micro-second

EREpER . An0
N IPC_* Fork latency of OS primitives.
Communication State Invoke Serverless Function
A m&mMillisecond latency of
~—=___ ' " cloud proxies.

A Serverless Process
TITTT Microsecond latency of
IPC PraaS backend.

S~ Data Plane

O spcl/PraaS

A5 2

[
70
i

durability. /4 100K
o e .
wrar. Paper preprint.

/
Serverless shines in low op/s scenarios.

" Paper preprint.

Accessing local
state in process
is faster than
using remote
cloud storage.

Serverless process: introducing new abstraction to improve data locality and integration.

Praa$S Data Plane vs Lambda.

-
o
N

Invoking function
in the same (local)
and another (remote)
process is more
efficient than Faa$S |
Invocations. T ke S fgEE | S

Message size [bytes]
== TCP (baseline) B PraaS (Local) PraaS (Remote) . AWS Lambda

-
o
—

Invocation Time [msec]
[
o

Reduction Benchmark: Praa$S State vs S3.

100000 13 15 11 11 11 50

10000
40

1000
30
100
= 20

10

Input size [elements]

1 10 25 50 100
Number of reduction invocations

IPOPS

i§; 2023 « St. Petersburg,
- Florida USA

