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ABSTRACT

The personalized all-to-all collective exchange is one of the
most challenging communication patterns in HPC applica-
tions in terms of performance and scalability. In the context
of the fat tree family of interconnection networks, widely
used in current HPC systems and datacenters, we show that
there is potential for optimizing this traffic pattern by de-
riving a tight theoretical lower bound for the bandwidth
needed in the network to support such communication in a
non-contending way. Current state of the art methods re-
quire up to twice as much bisection bandwidth as this theo-
retical minimum. We propose a set of optimized exchanges
that use exactly the minimum amount of resources and ex-
hibit close to ideal performance. This enables cost-effective
networks, i.e., with as little as half the bisection bandwidth
required by current state of the art methods, to exhibit quasi
optimal performance under all-to-all traffic. In addition to
supporting our claims by mathematical proofs, we include
simulation results that confirm their correctness in practical
system configurations.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Network communications

Keywords

all-to-all; fat tree networks; bandwidth optimality

1. INTRODUCTION AND MOTIVATION
Today’s parallel computations are often arranged in a bulk

synchronous programming (BSP) model [36] in which com-
munication and computation steps alternate. For example,
in the Message Passing Model as implemented by MPI [25],
one can realize communication steps by sending messages
between processes. Several common communication pat-
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terns, such as broadcast, are available as collective com-
munications in MPI. This high-level specification enables a
clean separation of concerns between the algorithm, that
requires certain semantics, and the network architecture,
that implements communication. This enables performance-
portability of programs to a wide variety of different ar-
chitectures and systems. Indeed, a collective programming
model has enormous benefits for programmability as well
as performance [9] and is thus also adopted by many other
parallel programming environments [2, 21].

Of those collective communications, all-to-all is certainly
the most demanding operation for the network because it
needs to move Ω(p) data between p processes; it is thus also
often considered the least scalable of MPI’s collective op-
erations [3]. Yet, there are many applications that require
this communication pattern: Spectral codes, such as Direct
Numerical Simulation [23] perform a 3D Fast Fourier Trans-
form, utilizing large all-to-all communications for transpos-
ing the y direction over the network together with shared-
memory on-node transforms of the x direction [6]. Even
at the other end of the spectrum of scientific applications,
data-driven parallel graph computations, such as between-
ness centrality, essentially perform full all-to-all exchanges
over the network [37].

All-to-all has thus been the subject of multiple research
efforts optimizing it for different theoretical network mod-
els, such as LogP [29] or Postal [4], or technologies, such as
InfiniBand [19] or Myrinet [39]. Our approach, however, is
mostly oblivious to the network technology and current the-
oretical network models because we optimize for a certain
network topology.

One important topology today is the family of fat
trees [17], which form the base of several Petascale com-
puter architectures (e.g., [38]). Fat trees con be configured
in terms of bandwidth, rack layout, and cost. At the heart
of the cost/performance trade-off, and thus a critical deci-
sion in supercomputer design, is the number of resources
towards the root, which determines the bisection bandwidth.
As computations requiring all-to-all exchanges are impor-
tant, and as it is commonly believed that all-to-all band-
width is bounded by the bisection bandwidth (cf. [16]), most
fat tree networks are designed with full bisection bandwidth.

In this paper, we show that all-to-all only requires half
bisection bandwidth due to its inherent locality. We then
demonstrate how to design slimmed fat trees that have op-
timal cost while still providing full all-to-all bandwidth and



0 0 0 0 8 8 8 8

0

1

2

3

4

5

6

7

Phase 0 Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6 Phase 7

Figure 1: XOR exchange pattern between 8 com-
municating tasks. The first half of the phases are
local and no traffic crosses the network bisection
(horizontal line), whereas during the last half of the
phases, all the messages cross the bisection (con-
tinuous lines). This requires a bisection bandwidth
equal to the aggregate injection bandwidth.

how to schedule all-to-all communications on general trees
optimally. The main contributions of our work are:

• A general discussion of locality in the all-to-all prob-
lem.

• A construction of cost-optimal fat trees delivering full
all-to-all bandwidth.

• An algorithm to compute optimal exchange patterns
for a given fat tree.

We start with a description of the locality within all-to-all
and intuitive examples for mappings to fat trees. We then
present generic lower bounds for all-to-all communications
on fat trees followed by a construction of optimal all-to-all
schedules. We conclude our study with a set of simulated
real-world examples.

2. THE ALL-TO-ALL PROBLEM
In this section we will discuss the intuition behind the

bounds for all-to-all. The full proof and the algorithm to
compute the send permutations for a given fat tree will be
presented in Sections 3.1 and 3.4.

All-to-all is often referred to as“bisection-bound”(cf.[16]).
While this is true asymptotically, i.e., a full-bandwidth all-
to-all requires a Ω(p) bisection bandwidth on p processes, we
will show that it only requires half of the actual bisection
bandwidth if one can take advantage of the inherent locality
of the all-to-all problem.

Consider an all-to-all schedule where each process p ∈ P
exchanges a single message with each other process. Let P1

and P2 form an arbitrary bisection of the process set P , such

that b = |P1| = |P2| = |P |
2

. In an all-to-all, each process in
the set P1 has b peers in P1 and b peers in P2, such that

only b = |P |
2

exchanges leave each set. If P1 and P2 were
arbitrary bisections of processes mapped to endpoints in an
arbitrary topology, then only half of the messages cross any
bisection of this topology. Thus, intuitively, all-to-all ex-
changes require only half bisection bandwidth for arbitrary
topologies.

The argument can be applied recursively, i.e., partition-
ing P1 into P11 and P12 etc., yielding a bandwidth-minimal
construction. We now demonstrate that current all-to-all al-
gorithms do not take advantage of this observation and thus
require full bisection bandwidth for a full-bandwidth all-to-
all. We then show how to utilize our observation by opti-
mally scheduling all-to-all communications such that they
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Figure 2: Linear exchange pattern between 8 com-
municating tasks for shift = 0. The uneven distri-
bution of the number of messages (continuous lines)
crossing the network bisection requires a bisection
bandwidth equal to the aggregate injection band-
width to enable contention-free traffic in all phases.

require only half bisection bandwidth and cause less conges-
tion than today’s algorithms.

A typical [40] way of performing an all-to-all exchange
between N processes or tasks, especially when there is no
possibility of message aggregation (such as is the case for
large messages), is to schedule the exchange as a set of N
phases. Every process sends a single message and receives
a single message in each phase (we consider that a process
sends a message to itself as well). In this case, the exchange
pattern can be entirely defined by a function that maps a
given phase p and source task s to a unique destination task
d (all three numbered from 0 to N−1), meaning that during
phase p, the message sent by task s is destined to task d.
The two widely used exchange patterns are the binary XOR
exchange and the linear shift exchange [40].

In the case of XOR (Figure 1), the function is dXOR =
s XOR p, where the exclusive or operation is performed bit
by bit on the binary representations of s and p.

In the case of the linear shift exchange [30] (Figure 2), the
function is dLIN = (s+p+shift) mod N , where N is the total
number of communicating tasks and shift is a parameter that
takes a constant integer value between 0 and N − 1.

If we partition the 8 nodes in the example all-to-all in the
two equal halves separated by the horizontal median line it
is obvious that both exchanges exhibit an uneven distribu-
tion of the amount of traffic traversing this bisection of the
network across the different phases, with a peak required
bisection bandwidth, in both cases, equal to the aggregate
injection bandwidth.

Looking at the two examples, it is equally obvious that
the average number of messages crossing the bisection as we
have defined it in every phase is only half the total number
of communicating tasks. Furthermore, there is a way to
ensure that in every phase no more than this average number
of messages crosses the bisection (Figure 3). This makes it
possible to have uncontended per phase traffic with only half
the full bisection bandwidth.

We will show in the following sections that the observa-
tions for this small example hold in general. We will prove
tight lower bounds on the bandwidth required for uncon-
tended all-to-all traffic. Furthermore, for fat tree networks
in particular we will introduce a bandwidth-optimized ex-
change pattern that satisfies these bounds.

3. ALL-TO-ALL OPTIMIZATION
First, we define the model of the interconnection network

we are considering, the fat tree network. Fat trees are one of



the most popular indirect network topologies used in current
supercomputers.

The term fat tree has been used to refer to a broad class
of different interconnection layouts. All fat trees can be
described as a multi-stage tree-like topology where the width
(bandwidth) of the connections increases towards the root
of the tree.

An ideal fat tree would be a single binary tree intercon-
nection network where the bandwidth of each link towards
the root can always accommodate the aggregate capacity of
the sub-tree connected to that link. These ideal fat tree net-
works are not realizable for large clusters, as the bandwidth
needs to double at each level towards the root, which would
require switches with either exponentially increasing num-
ber of ports or exponentially increasing bandwidth per link.
The CM-5 [17] was the first machine to implement a variant
of the ideal fat tree network.

However, it is possible to construct a tree-like network
with an equivalent link bandwidth property by using fixed-
radix switches, i.e., without increasing the number of con-
nections per switch or their bandwidth [28, 27]. It is further-
more possible to construct networks [26] where the band-
width towards the root can be tuned to almost arbitrary
values, from the full-bisection bandwidth characteristic of
ideal fat-trees to reduced bandwidth realizations that have
a correspondingly reduced cost. We will discuss these and
other practical implications of our method in Section 4.

For the time being, we will assume the following fat-tree
model. We consider a layered single rooted tree structure
that is homogeneous in that every node on a given layer has
the same number of descendants. Using a notation similar
to [26], we denote by FT (L; M1, M2, ..., ML) a tree of L+1
consecutively numbered layers, with 0 being the layer of the
leaves and L that of the single root. Given a layer l, Ml

then denotes the number of descendants that every node on
layer l has. The tasks that send and receive messages are
located at the leaf nodes, whereas the nodes on the other
levels serve as message routers. We will assume a single
task per node (The case where several tasks are present on
the same node is equivalent to extending the fat tree with
an additional leaf level, where every leaf corresponds to a
task). Furthermore, we will assume that every upward link
starting on a node on a given layer has a fixed bandwidth
dependent only on the layer index. In the context of this
abstract model of the network, we will now prove that the
requirement of uncontended all-to-all traffic induces a tight
lower bound on the bandwidth of every fat tree link.

3.1 Bandwidth-optimal link occupation in all-
to-all communication over a fat tree

Given a fat tree FT (L; M1, ..., ML) defined as above, we
will show in this section that uncontended all-to-all traffic
requires that every upward link originating on a layer l node
as well as every downward link ending on a layer l node
needs to be able to accommodate at least Bmin(l) messages,
with:

Bmin(l) = M1 ·M2 · ... ·Ml −

—

M1 · M2 · ... · Ml

Ml+1 · Ml+2 · ... · ML

�

. (1)

To this end, we denote by Πl the product M1 ·M2 · ... ·Ml.
Given that every leaf node corresponds to a single task, the
total number of tasks is N = ΠL. Let us consider one of
the nodes on level l, denoted by µ. The total number of
messages originating from layer 0 descendants of this node
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Figure 3: Optimized exchange pattern obtained for
a fat tree with 2 levels and with M2 = 2 and M1 = 4.
The link occupation optimization ensures that in ev-
ery phase exactly half of the messages (continuous
lines) cross the network bisection, thus making con-
tention free traffic possible with only half the full
bisection bandwidth.

during the all-to-all exchange is equal to the number of such
descendants (which equals Πl) multiplied by the total num-
ber of destinations (which equals ΠL). Out of these ΠL

destinations, Πl are located in the subtree rooted in µ and
thus messages destined to these “local” tasks need not be
routed on the link going upward from µ. All messages des-
tined to the other tasks, located outside the subtree rooted
in µ, must be routed on µ’s upward link. Consequently, dur-
ing the complete all-to-all exchange, the number of messages
passing through the upward link originating on any node on
level l equals U(l) = Πl · (ΠL − Πl).

As the exchange comprises ΠL phases, the average per-
phase number of messages passing through the upward link
originating on a given node on level l therefore equals U(l) =

Πl ·
“

1 − Πl

ΠL

”

Given an arbitrary exchange pattern and an arbitrary
phase of that exchange, the maximum number of messages
passing through an upward link at level l is equal to or
greater than U(l). This is equivalent to saying that at least
one link will have U(l) or more messages passing through it
in that phase. Thus, a prerequisite for uncontended single-
phase traffic is to provide every upward link with sufficient
bandwidth to transfer at least this number of messages.
As such, contention-free traffic imposes a lower bound of
˚

U(l)
ˇ

on the number of messages that every upward link
starting on a layer l node must be able to accommodate,
bound that is equal to Bmin(l) as defined in Equation (1).

Through a similar analysis, we can compute the mini-
mum bandwidth necessary on downward links. Considering
again one arbitrary node µ on level l, the total number of
messages destined to level 0 descendants of this node dur-
ing the entire exchange is equal to Πl · ΠL. Out of the
ΠL sources of these messages, Πl are located in the sub-
tree rooted in µ and thus none of the messages originating
from them traverse the downward link ending in µ. Conse-
quently, during the complete exchange, the number of mes-
sages passing through the downward link ending on any node
on level l equals D(l) = Πl · (ΠL − Πl), which leads to an
average per-phase number of downward messages equal to

D(l) = Πl ·
“

1 − Πl

ΠL

”

.

Applying the same argument as before, we conclude that
every downward link ending on a layer l node must be able
to accommodate at least

˚

D(l)
ˇ

messages, which is again
exactly equal to Bmin(l) defined in Equation (1).

Next, we will introduce an exchange pattern that requires



no more than this minimum capacity, thus effectively prov-
ing that the bounds are tight. We will start by intuitively
explaining the construction of the new pattern, then proceed
to rigorously define it and prove its optimality.

3.2 Intuitive bandwidth-optimal exchange
Let us consider the example all-to-all exchange among 8

tasks presented in Section 2on a FT (2; 4, 2) topology. For
simplicity, let’s start by optimizing the load induced by all
tasks, on the two upward links ending in the root node.

As shown in Section 3.1, the key to optimizing bandwidth
utilization is to balance the load on each link across all
phases. Obtaining a bandwidth utilization of Bmin across
all phases is only possible if every phase exhibits this uti-
lization. In our specific example, we are interested in
Bmin(1) = M1 − ⌊M1/M2⌋ = 2. Thus, we must find a way
to ensure that an arbitrary upward link ending on the root
is used by exactly two messages in each phase. One way to
achieve this is for every source task s to choose in any two
consecutive phases a destination that is in the same layer 1
subtree as itself and a destination that is in the other layer 1
subtree. However, this is not enough, as all 4 tasks in a sub-
tree could all choose to send messages outside of the subtree
in the same phases. Therefore it is also necessary that the
source tasks belonging to the same subtree are desynchro-
nized among themselves in their choice of the destination
subtree. A simple subtree selection function that achieves
this is ((s mod 2)+(p mod 2)) mod 2. Once we have selected
the subtree, we also need to ensure that the actual destina-
tion within that subtree is unique over the set of sources.
This can be achieved by selecting among the 4 choices in
a specific subtree via the formula ((s/2) + (p/2)) mod 4,
where / yields the quotient of integer division. The complete
destination selection function can then be defined as: d =
(((s mod 2)+(p mod 2)) mod 2)∗4+((s/2)+(p/2)) mod 4.
This exchange is illustrated in Figure 3 and it is bandwidth
optimal as exactly 4 messages cross the bisection in each
phase.

We extend this to the general case of a FT (L; M1, ..., ML)
topology using the same principles. To balance load on the
highest layer links, every source will send in ML consecutive
phases to ML different subtrees. This approach is reused
recursively from top to bottom.

The formalization and rigorous generalization of the ap-
proach follows in the next subsections. We first define a
generic family of exchanges based on a variable base repre-
sentation of numbers, then proceed to select among this set
an exchange that we will prove to be bandwidth-optimal.

3.3 Permuted variable base exchanges
Given an ordered set of strictly positive integer num-

bers (Θ1, Θ2, ..., ΘK) and given a number x with 0 ≤ x <
ΠK

k=1Θk, we define the following notation:

x = ΣK
k=1

“

θx
k · Πk−1

k′=1Θk′

”

, 0 ≤ θx
k < Θk, 1 ≤ k ≤ K. (2)

Basically, this equation defines a way of representing pos-
itive integers in ”variable base”. Unlike a normal base-
n representation where each digit can take any value be-
tween 0 and n − 1, in this case each digit may have a
different range. The θk digits define a representation in
base (Θ1, Θ2, ..., ΘK), where the least significant digit’s base
is Θ1. This representation, which applies solely to non-

negative integers strictly smaller than ΠK
k=1Θk, can be easily

proven to be unique and uniquely identifying a certain value.
That is to say:

∀x, y s.t. 0 ≤ x, y < ΠK
k=1Θk,

x = y ⇔ (θx
k = θy

k , 1 ≤ k ≤ K).
(3)

In the context of fat trees, we will assign a variable base
representation to every leaf node, and consequently, to every
task. For this, we will assign tasks with indices ranging
from 0 to ΠL − 1 and choose appropriate variable bases to
represent those indices in.

Given a fat tree FT (L; M1, ..., ML), let K = L and let
(Θ1, Θ2, ..., ΘL) = (Mσ(1), Mσ(2), ..., Mσ(L)), where σ is an
arbitrary permutation of (1, 2, ..., L). Additionally, we de-
note by αx

k the digits of an arbitrary number x in the vari-
able base (M1, M2, ..., ML). With these notations, we pro-
pose the following exchange pattern, which we will refer to
as a permuted-variable-base exchange pattern. Let d be the
destination of the message generated by source s in phase
p. All three values s, d and p are numbers between 0 and
ΠK

k=1Mk − 1. Then the function defining the pattern is:

αd
σ(k) = (θs

k + θp

k) mod Θk, 1 ≤ k ≤ K. (4)

We will now show that this exchange model satisfies the
two key properties of a valid all-to-all exchange pattern com-
posed of phases: a source never sends to the same destina-
tion twice and no two sources send to the same destination
in the same phase.

For the first property, let p1 and p2 be two distinct phases
and let s be a certain source. We seek to prove that in this
case, d1 and d2 obtained with Equation (4) are distinct.

Because p1 and p2 are positive and strictly smaller than
ΠK

k=1Mk, they have a θ-representation. Furthermore, since
they are distinct, according to Equation (3) there exists at

least one k̃ with 1 ≤ k̃ ≤ K such that θp1

k̃
6= θp2

k̃
. According

to Equation (4):

θs

k̃
+ θp1

k̃
= q1 · Θk̃ + αd1

σ(k̃)

where q1 is an integer. Given that

0 ≤ θs

k̃
+ θp1

k̃
< 2 · Θk̃

and

0 ≤ αd1

σ(k̃)
< Θk̃

it follows that

−Θk̃ < q1 · Θk̃ < 2 · Θk̃.

As q1 is an integer, it can only be 0 or 1. Similarly, q2 has
the same property. In the case where both are 0 or both are
1 (q1 = q2 = q), it immediately follows that αd1

σ(k̃)
6= αd2

σ(k̃)

from:

θs

k̃
+ θp1

k̃
− q · Θk̃ = αd1

σ(k̃)

θs

k̃
+ θp2

k̃
− q · Θk̃ = αd2

σ(k̃)



θp1

k̃
6= θp2

k̃

In the case where q1 is 1 and q2 is 0, we obtain

θp1

k̃
− θp2

k̃
= αd1

σ(k̃)
− αd2

σ(k̃)
+ Θk̃.

If αd1

σ(k̃)
were equal to αd2

σ(k̃)
, then θp1

k̃
− θp2

k̃
= Θk̃, which

would lead to θp1

k̃
≥ Θk̃, which would constitute a contra-

diction. Therefore, in this case as well, αd1

σ(k̃)
must be dif-

ferent from αd2

σ(k̃)
. The symmetric case (q1 is 0 and q2 is

1) is similar. As we proved that there exists a k̃ for which

αd1

σ(k̃)
6= αd2

σ(k̃)
, we proved that d1 6= d2.

The proof of the second property is similar as the com-
putation of the destination task as given by Equation (4)
is symmetric with respect to the phase number p and the
source number s.

This shows that every permutation σ of (1, 2, ..., L) in-
duces a valid exchange pattern. However, not all of these
patterns optimize the maximum traffic traversing the up-
ward links in the fat tree. In the following subsection, we
will prove that the specific exchange pattern corresponding
to σ = (L, L − 1, ..., 2, 1) is bandwidth-optimal.

3.4 Bandwidth-optimal exchange pattern
As explained above, let (Θ1, Θ2, ..., ΘL) =

(Mσ(1), Mσ(2), ..., Mσ(L)) = (ML, ML−1, ..., M1).
We will prove that the bandwidth requirements induced at

layer l by the variable-base-exchange corresponding to this
particular base is equal to Bmin(l).

We will start with the per phase bandwidth requirement
per upward link. First note that all the descendants of a
given node on level k̃ share the same αk values for all k such
that k̃ < k ≤ L.

Let p be a given phase of the all-to-all exchange. Let µ be
an arbitrary node at level k̃. The total number of messages
originating in level 0 descendants of this node during phase
p is Πk̃. Among these messages, some will be destined to
nodes that are descendants of µ and some to nodes that are
not. For a message to be destined to a descendant of µ, as
noted above, its destination d must have certain fixed values
for some of its α coefficients, values that depend exclusively
on the position of µ. Specifically:

αd
k = αk(µ), k̃ < k ≤ L.

As d is obtained via Equation (4) this leads to:

(θs
L+1−k + θp

L+1−k) mod Mk = αk(µ), k̃ < k ≤ L.

As for a given p, the θ representation of p is fixed, and
θs

L+1−k, θp

L+1−k and αk(µ) are all strictly smaller than Mk,
this means that the θ representation of s needs to satisfy:

θs
L+1−k = tk(µ, p), k̃ < k ≤ L

where tk(µ, p) is a set of factors independent of s. So for a
descendant s of µ to send a packet to another descendant of
µ in phase p of the exchange, the θ coefficients of s from rank
1 to rank L− k̃ must all have values that depend exclusively
on µ and p, but not on s. According to the θ representation
definition in Equation (2), this is equivalent to:

s = r(µ, p) + q(s, µ, p) · ΠL−k̃
k=1 Θk

where 0 ≤ r(µ) < ΠL−k̃
k=1 Θk. Thus, the only sources s that

send messages to other descendants of µ are those whose
index yields a fixed remainder (dependent of µ and p) when

divided by ΠL−k̃
k=1 Θk. Because the s values are consecutive

among the descendants of µ and because in total there are
Πk̃ such descendants, the minimum number of sources that
send to a destination that is also a descendant of µ is:

Nmin(k̃) =

$

Πk̃

ΠL−k̃
k=1 Θk

%

which according to the definition of the base is equal to:

Nmin(k̃) =

$

Πk̃

ΠL

k=k̃+1
Mk

%

. (5)

The rest of the messages could potentially go outside of
the subtree rooted in µ. Therefore, the maximum bandwidth
(in terms of number of messages) necessary on the upward

link starting on any node on level k̃ is:

Bmax(k̃) = Πk̃ −

—

M1 · M2 · ... · Mk̃

Mk̃+1 · Mk̃+2 · ... · ML

�

(6)

which exactly equals the value we previously found for the
minimum bandwidth theoretically necessary in a fat tree for
contention-free all-to-all messaging.

The per-phase bandwidth requirement per downward link
can be computed analogously. During a given phase, at
most Πk̃ messages in total are sent to the Πk̃ level 0 de-

scendants of a node µ of the fat tree on level k̃. It can be
shown with an argument analogous to the one above that
among these messages, a minimum number must originate
from these same descendants, and that that minimum num-
ber is equal to Nmin(k̃) in Equation (5). As such, by the
same argument as before, we obtain the same upper bound
as that given by Equation (6) for the bandwidth required on
the downward links.

3.5 Discussion
In this section, we have derived tight lower bounds on the

bandwidth requirement of the all-to-all exchange in fat tree
networks. We have also introduced an optimal exchange
pattern that uses no more than the minimal bandwidth.

This new exchange pattern allows for a better use of net-
work resources, freeing bandwidth for other traffic if the
tree was designed with bandwidth in excess of the minimal
bound, or, alternatively, allowing for reduced-cost fat trees
that perform optimally under the all-to-all.

Compared to a standard fat tree that offers full bisection
bandwidth at every level, the amount of bandwidth that
is left unused, or, alternatively can be removed altogether
from the tree is given, for a layer l link, by Πl − Bmin(l).
This bandwidth surplus is largest at the top of the tree and
decreases rapidly with the layer index. Nonetheless, at the
highest level we can leave unused as much as 1

ML
of the full

bisection bandwidth. Given certain conditions (specifically
ML = 2), this means we can achieve optimal all-to-all traffic
with only half the full bisection bandwidth.



Because the amount of redundant bandwidth at lower lay-
ers of the tree decreases exponentially, in practice only a few
top levels will allow significant reduction of bandwidth us-
age while some lower levels will allow no reduction at all.
This, coupled with the fact that the fully optimized pattern
as described above is highly intricate, leads to an interest
in performing the optimization only at the levels where re-
duction occurs. We have developed methods similar to the
one presented above to tune the complexity of the pattern
while maintaining optimality but these will be discussed in
a subsequent work.

4. PRACTICAL CONSIDERATIONS
In this section we will address some issues that arise from

the fact that, in practice, fat tree networks are not imple-
mented by means of ideal fat trees. This is because in prac-
tice the exponential increase in link bandwidth that is typi-
cal of multi-layered fat trees can only be achieved by means
of having an exponentially increasing number of links be-
tween a single pair of nodes. This in turn leads to a neces-
sity of switches with a very large port count, which are not
feasible.

Therefore, in practice, fat tree topologies are approxi-
mated by means of k-ary n-trees [28, 27] or more generally
by means of Extended Generalized Fat Trees (XGFTs) [26].
These network designs offer an alternative that only needs
fixed small-radix switches and still provides many of the
properties of ideal fat trees. However, the advantages come
at the expense of reduced flexibility in bandwidth configura-
tion and, more importantly, at the expense of needing more
complicated routing algorithms.

The following two subsections briefly outline how the rout-
ing needs to be adapted to take full advantage of the optimal
exchange pattern and provide an estimate of the cost sav-
ing that can be achieved by reducing the bandwidth to the
theoretical lower bound for optimal all-to-all exchanges.

4.1 Routing in XGFTs
In practical fat tree realizations, optimizing the exchange

pattern is not sufficient to benefit from contention-free traf-
fic. The optimal exchange pattern introduced in Section 3.4
only ensures that, in each phase, the aggregate bandwidth
at each fat-tree-equivalent-node of the network matches the
aggregate number of messages traversing that node.

This is a necessary but not a sufficient condition for
contention-free message routing. In addition, the routing
strategy must ensure that the messages indeed use the avail-
able bandwidth evenly, i.e., it must assign conflict-free paths
for all messages in each phase.

In XGFT networks, the typical way to establish minimal
deadlock-free paths is simple up*/down* routing [33]. Given
a (source, destination) pair, paths are constructed by rout-
ing upwards to any of the Nearest Common Ancestor (NCA)
nodes and then downwards to the destination. Once a spe-
cific NCA is chosen, the routing choices from source to NCA
and from NCA to destination are uniquely determined. The
specificity of a certain routing strategy then lies in the ap-
proach used to select a specific NCA for every (source, des-
tination) pair.

Several traffic-pattern-oblivious approaches exist, from
random [10, 7] or adaptive [8, 20] route selection to
deterministic (e.g., modulo based) approaches such as
Source-mod-k [26, 17, 14] or Destination-mod-k [18, 31, 41].

For complex patterns such as ours however, oblivious rout-
ing can prove insufficient. A pattern-aware routing approach
takes advantage of information about the communicating
pairs in a network and information about the network itself
and uses it to find an optimized set of routes that will min-
imize contention for the set of (source, destination) pairs.
Pattern-aware schemes solve in some way or another a max-
flow network problem. A variety of approaches to achieve
this are presented by Kinsy et. al [15]. Among these ap-
proaches, we were able to derive optimal conflict-free routes
for the bandwidth-optimal exchange that we are proposing
by means of Mixed Integer-Linear Programming.

4.2 Cost effective fat tree networks
Since the optimized exchange exhibits contention free all-

to-all phases in reduced bandwidth topologies, we consider
the network cost savings that this exchange allows.

Given an XGFT(h : m1, m2, ..., mh : w1, w2, ..., wh) [26],
the number of switches necessary to build the layer l of the
topology is S(l) = w1 · ... · wl · ml+1 · ... · mh. The number
of bidirectional links that connect layer l to layer l − 1 is
E(l) = S(l) · ml.

To simplify the analysis, consider a simple cost reduction
scenario. Let’s start with a full bisection bandwidth XGFT
(i.e., where wl+1 = ml, 1 ≤ l < h and w1 = 1) that addi-
tionally has mh = 2. This is the case we have shown to have
the highest potential for bandwidth reduction. The reduced
tree, XGFT′(h : m1, m2, ..., mh : w1, w2, ..., w

′
h), has exactly

the same parameters as the full bisection bandwidth tree,
with the exception of w′

h which equals wh/2.
Given the properties shown above, we can see that, for

1 ≤ l < h, E(l) = E′(l) = E = w1 · m1 · ... · mh and S(l) =
S′(l) = E/ml. For l = h we have E(h) = E, E′(h) = w1 ·
m1 · ... · mh/2 = E/2, S(h) = E/mh and S′(h) = E/(2mh).

The saving potential in the number of switches equals

1 −

Ph

l=1 S′(l)
Ph

l=1 S(l)
= 1 −

1/(2mh) +
Ph−1

l=1 1/ml

1/mh +
Ph−1

l=1 1/ml

and in the number of links equals

1 −

Ph

l=1 E′(l)
Ph

l=1 E(l)
= 1 −

(h − 1/2) · E

h · E
=

1

2h
.

For typical XGFTs interconnecting 16 to 1024 leaf nodes,
we can thus achieve a reduction in the number of switches
of 25% − 30% and a reduction in the number of necessary
links of 12% − 16%.

5. EXPERIMENTS
The following results were obtained by means of a sim-

ulation framework that is able to accurately model custom
networks (including XGFTs) at a flit level [22]. The simu-
lator provides a high level of customization and modularity,
allowing the configuration of the desired model in detail.
Several tests have been performed on XGFTs of 16, 32, 64,
128, 256, 512 and 1024 leaf nodes and up to 4 non-leaf lev-
els. All these fat tree topologies had the M parameter of
the topmost level equal to two (ML = 2) and half bisection
bandwidth. Table 1 shows the exact configurations used.

The simulations were performed using output-buffered
switches with 4 kbytes of buffer space per port. The links
had a bandwidth of 10 Gbit/s while their latency was either



Figure 4: Bisection (top level) occupation induced by XOR, LIN and OPT exchange patterns. The topology
is an XGFT with ML = 2 with half bisection bandwidth and total number of leaf nodes equal to 1024. Figure
a) shows the total number of messages crossing the bisection in each phase, while Figure b) shows the best
value for maximum link contention (in number of messages), or best contention level, that can be obtained
in each phase.

N Network topology

16 XGFT [3 : 4, 2, 2 : 1, 4, 1]
32 XGFT [3 : 4, 4, 2 : 1, 4, 2]
64 XGFT [3 : 8, 4, 2 : 1, 8, 2]
128 XGFT [3 : 8, 8, 2 : 1, 8, 4]
256 XGFT [4 : 8, 4, 4, 2 : 1, 8, 4, 2]
512 XGFT [4 : 8, 8, 4, 2 : 1, 8, 8, 2]
1024 XGFT [4 : 8, 8, 8, 2 : 1, 8, 8, 4]

Table 1: Benchmarked topological configurations,
using the notation from [26].

set to an ideal value of zero (to validate theoretical estima-
tions) or to a realistic value of 100 ns (to estimate perfor-
mance on real-life systems). In this same realistic latency
scenario, switch traversal was considered to have a latency
of 50 ns while adapter latency (the time between a message
is issued in the MPI library and the time its first bit leaves
the adapter) was set to 500 ns. Credit based flow control
was used as well as wormhole switch traversal.

The messages have a constant size which, depending on
the scenario, took values between 64 bytes (a single flit) and
32 kbytes, while the flit size was fixed to 64 bytes. Each
acknowledgement consisted of a single flit.

The traffic pattern is that of a single all-to-all collective
exchange performed by one task on each of the leaf nodes
of the XGFT. The exchange is split into consecutive phases
in each of which every node sends a single message and re-
ceives a single message and acknowledges it. No explicit
synchronization or separation of the phases is enforced. The
exact structure of each phase (the set of (source, destina-
tion) pairs) is defined according to one of three exchange
models, all defined in Sections 2 and 3.4:

• XOR: the binary XOR model,

• LIN: the linear shift model with a shift value of 0,

• OPT: the optimized exchange given by Equation (4).

The metric we used is that of the time necessary for the
traffic pattern to complete. However, these completion times

can amount to very different values when looking at differ-
ent sized networks and even at the same network with mes-
sages of different size. We are not interested in how these
parameters influence the completion time, but rather in the
influence of the exchange pattern within each given (network
size, message size) configuration. As such, all results show
the relative completion time compared to an ideal comple-
tion time that we will define in the following.

5.1 Ideal all-to-all performance
We use the following model to compute a best-case ex-

pectation for the completion time of the all-to-all exchange.
Ideally, the messages travel through the network with no
contention and simply incur the cumulative latency of the
links, switches and adapters that they traverse. During the
exchange, a given source sends M1 ·M2 · ... ·Ml−1 · (Ml − 1)
messages to sources in its layer l subtree but not in its layer
l−1 subtree, for every l. These messages need to first arrive
at the root of the subtree, passing through 1 adapter, l links
and l − 1 switches, then cross the root, then travel again
through 1 adapter, l links and l − 1 switches to get to their
destination. The cumulative latency for the entire path is
thus tpath(l) = 2 · tadapter + (2 · l − 1) · tswitch + 2 · l · tlink.

Given a message that is made up of F flits, each of size S,
and a link bandwidth of B, uncontended wormhole switch
traversal ensures that the time it takes end-to-end, from
message generation to message delivery, equals tpath(l)+F ·
S/B.

The message needs to be acknowledged, which is equiva-
lent to an extra one-flit message being sent along the re-
verse path. This leads to the total message time being:
T (l) = 2 · tpath(l) + (F + 1) · S/B.

Given the message distribution we described above, the
ideal exchange time is given by

T =

L
X

l=1

M1 · M2 · ... · Ml−1 · (Ml − 1) · T (l)

5.2 Ideal latency analysis and measurements
To validate our simulation framework, we analyze the net-

work contention induced by the three approaches when other
performance limiting factors such as latency and latency-
induced phase overlapping are factored out.



Figure 5: Completion time comparison between the three exchange patterns for varying networks sizes under
fixed 4 KB message size (Fig. a) and for varying message size under fixed 512 leaf nodes network size (Fig.
b). Please note the linear scale for the y axis in a) and the logarithmic scale for the y axis in b).

The XOR exchange exhibits no contention in half of its
phases, namely in the phases where messages do not reach
the top level of the fat tree. In the other half, N messages
cross the top level, but have only half bisection bandwidth
available, leading to a contention level of exactly two con-
flicts in every one of these N/2 phases. We defined the
contention level as being the maximum number of messages
that need to use a common link.

In the case of the LIN exchange, exactly N − |2p − N |
messages cross the top level of the tree in phase p, leading
to a contention level of 2 yet again in exactly N/2 phases
(the phases where N − |2p − N | > N/2).

In the case of the OPT exchange, exactly N/2 messages
cross the top level of the tree in every phase, leading to
uncontended traffic in every phase (Figure 4).

This implies that, in absence of latency and latency-
induced phase overlapping, we can estimate theoretically
that OPT will have a completion time close to the optimum,
while LIN and XOR will incur a doubling of the completion
time of half the phases, leading to at least a 50% increase
in all-to-all completion time. This is confirmed accurately
by our simulator, which yields completion times for OPT
within 1% of the ideal time and completion times for XOR
50% − 55% longer than ideal, both irrespective of the mes-
sage size. LIN performs even worse, with completion times
between 70% and 140% larger than ideal (the performance
loss increases with both the network and the message size).
This is due to additional phase overlapping induced by intra-
phase differences in message delivery time caused by differ-
ent flows exhibiting different levels of contention (which is
not the case for OPT and XOR).

5.3 Realistic latency results
We performed two sets of benchmarks to predict OPT per-

formance on real systems. The first one is aimed at studying
the influence of the network size on the performance gain in-
duced by the optimized exchange pattern. The second on
the other hand studies the influence of the size of the ex-
changed messages on the same performance gain.

Figure 5 a) illustrates the relative completion time of the
three exchange patterns for a fixed message size of 4 kbytes
and for different network sizes. We observed that in the real-
istic latencies configuration OPT managed to achieve com-
pletion times less than 10% higher than ideal, surpassing
XOR (which is between 15% and 35% worse than ideal) and
LIN (which is between 50% and 70% worse than ideal). The

advantage of the optimized exchange versus XOR was espe-
cially strong for smaller topologies.

Figure 5 b) illustrates the relative completion time of the
three exchange patterns for a fixed number of 512 communi-
cating tasks (and a fixed network size) and for different sizes
of the exchanged messages. We observed that for messages
smaller than approximately 512 bytes, where the completion
time is latency dominated, the optimization of the exchange
doesn’t help too much, because the impact of contention was
small. For messages larger than this threshold, where the
completion time was congestion dominated, OPT achieved
an increasingly closer to ideal level of performance (reach-
ing only a 2%−5% difference for very large messages), while
the non-optimized exchanges became progressively worse as
the message size increased, reaching as much as a 40% per-
formance decrease for XOR and as much as 140% for LIN,
for very large messages. This confirms that our approach is
asymptotically bandwidth optimal.

6. RELATED WORK
Collective optimizations are increasingly important in

large-scale high-performance computing. Thus, numerous
research works deal with the optimization of collective op-
erations in general and all-to-all in particular. Most tradi-
tional approaches assume theoretical network models, such
as the Postal model or the LogP model. Well-tuned al-
gorithms exist for both models [4, 1]. However, all theo-
retical models (with the notable exception of LoGPC [24],
which has not been used to model all-to-all algorithms due
to its complexity), do not consider the network topology and
thus only optimize endpoint congestion. Our work, however,
uses a simple topology-specific model for optimizing all-to-
all communications. Our model can be combined with ex-
isting network models to model endpoint congestion more
accurately and can also be used as a blue-print for optimiz-
ing other collectives on fat trees. However, our contribution
lies in the scheduling algorithm rather than the model.

Topology becomes more important with growing system
size and several researchers acknowledge the fact that al-
gorithms purely based on the mentioned theoretical models
do not perform well on real systems. For example, Chan
et al. [5] provide a general abstract framework for topology-
aware collective communication. However, the abstract na-
ture of this framework makes it hardly applicable to the re-
cursive structure of fat trees. Zahavi et al. [42, 40] show that
a particular routing function (a variant of up*/down*) guar-



antees under certain placement conditions full-bandwidth
all-to-all exchanges implemented using typical collective per-
mutation sequences on full bisection bandwidth fat trees.
We improve upon this result by a factor of two, in that
our methods applied to networks with half the full bisec-
tion bandwidth exhibit no or negligible decrease in perfor-
mance by comparison. Sack and Gropp present a small set
of topology-aware collectives for fat tree and torus networks
in [32], however, in this latest work, they do not consider all-
to-all and their approach of adding communication does not
lead to improvements for all-to-all. In previous work [35],
targeted at the implementation of optimized collectives in
MPICH, the authors proposed the selection among a pool
of implementations of different collective algorithms depend-
ing on message size and number of communicating processes,
but not on any specific topology.

Other approaches for optimizing collectives, for example,
improving the lower-level send/receive primitives [19], non-
blocking collectives [12, 11], or hierarchical exchanges [13,
34] are completely orthogonal to the scheduling of messages.
Those techniques can use our message-scheduling algorithm
for improving the bandwidth of all-to-all.

7. CONCLUSIONS
The goal of this paper was to show that the current state

of the art exchange patterns for the personalized all-to-all
collective message exchange can be optimized in fat tree
topologies to the point of using half of the bisection band-
width required by previous proposals. To this end, we have
derived a theoretical bound on the network link occupation
that is intrinsically necessary and sufficient for any all-to-all
exchange and we have shown that current approaches require
as much as twice that proven optimally minimum. Further-
more, we introduced a message exchange pattern that we
demonstrated to be bandwidth-optimal and that thus uses
exactly the minimum required amount of network resources.
Finally, by conducting network simulations benchmarking
the proposed method against established approaches, we
confirmed that in practical scenarios the optimizations we
proposed achieve important reductions in network utiliza-
tion, or alternatively network complexity and cost (by re-
ducing the top level of the network such that only half the
bisection bandwidth remains available), with little impact
on performance. Furthermore, we demonstrated that in the
half-bisection network scenario, where a cost-effective net-
work with only the minimum amount of necessary resources
was used, current methods incurred significant performance
penalties, (in the 12% to 40% range for XOR and in the 12%
to 140% range for LIN) whereas our method only diverged
by at most 12% from optimal performance.

In conclusion, our method enables new design options for
fat tree networks and offers a viable way of maintaining close
to ideal application performance levels with important re-
ductions in cost.
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Improving routing performance in Myrinet networks.
In Proc. of the 14th International Parallel and
Distributed Processing Symposium, pages 27–32, Los
Alamitos, CA, USA, 2000. IEEE Computer Society.

[8] P. Geoffray and T. Hoefler. Adaptive routing
strategies for modern high performance networks. In
High Performance Interconnects, 2008. HOTI ’08.
16th IEEE Symposium on, pages 165–172, Aug. 2008.

[9] S. Gorlatch. Send-receive considered harmful: Myths
and realities of message passing. ACM Trans.
Program. Lang. Syst., 26(1):47–56, Jan. 2004.

[10] R. I. Greenberg and C. E. Leiserson. Randomized
routing on fat-trees. In Proc. of the 26th Annual
Symposium on the Foundations of Computer Science,
pages 241–249, 1985.

[11] T. Hoefler and A. Lumsdaine. Optimizing
non-blocking collective operations for InfiniBand. In
IEEE International Symposium on Parallel and
Distributed Processing, IPDPS 2008, pages 1 –8, 2008.

[12] T. Hoefler, A. Lumsdaine, and W. Rehm.
Implementation and performance analysis of
non-blocking collective operations for MPI. In
Proceedings of the 2007 ACM/IEEE Conference on
Supercomputing, SC ’07, pages 1 –10, nov. 2007.

[13] P. Husbands and J. C. Hoe. MPI-StarT: delivering
network performance to numerical applications. In
Proceedings of the 1998 ACM/IEEE conference on
Supercomputing (CDROM), Supercomputing ’98,
pages 1–15, Washington, DC, USA, 1998.

[14] H. Kariniemi. On-Line Reconfigurable Extended
Generalized Fat Tree Network-on-Chip for
Multiprocessor System-on-Chip Circuits. PhD thesis,
Tampere University of Technology, 2006.

[15] M. A. Kinsy, M. H. Cho, T. Wen, E. Suh, M. van
Dijk, and S. Devadas. Application-aware deadlock-free
oblivious routing. In Proceedings of the 36th annual
international symposium on Computer architecture,
ISCA ’09, pages 208–219, New York, NY, USA, 2009.
ACM.

[16] C. Kurmann, F. Rauch, and T. M. Stricker.
Cost/performance tradeoffs in network interconnects
for clusters of commodity PCs. In Proceedings of the



17th International Symposium on Parallel and
Distributed Processing, IPDPS ’03, pages 196.2–,
Washington, DC, USA, 2003. IEEE Computer Society.

[17] C. Leiserson et al. The network architecture of the
Connection Machine CM-5. In Proc. of the Fourth
Annual ACM Symposium on Parallel Algorithms and
Architectures, pages 272–285, San Diego, CA, USA,
June 1992.

[18] X.-Y. Lin, Y.-C. Chung, and T.-Y. Huang. A multiple
LID routing scheme for fat-tree-based InfiniBand
networks. Proc. of the 18th International Parallel and
Distributed Processing Symposium, pages 11–, 2004.

[19] A. Mamidala, R. Kumar, D. De, and D. Panda. MPI
collectives on modern multicore clusters: Performance
optimizations and communication characteristics. In
Cluster Computing and the Grid, 2008. CCGRID ’08.
8th IEEE International Symposium on, pages 130
–137, may 2008.

[20] J. C. Mart́ınez, J. Flich, A. Robles, P. López, and
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