
Enabling Highly-Scalable Remote Memory Access
Programming with MPI-3 One Sided

Robert Gerstenberger
∗

ETH Zurich
Dept. of Computer Science

Universitätstr. 6
8092 Zurich, Switzerland
robertge@inf.ethz.ch

Maciej Besta
ETH Zurich

Dept. of Computer Science
Universitätstr. 6

8092 Zurich, Switzerland
maciej.besta@inf.ethz.ch

Torsten Hoefler
ETH Zurich

Dept. of Computer Science
Universitätstr. 6

8092 Zurich, Switzerland
htor@inf.ethz.ch

ABSTRACT
Modern interconnects offer remote direct memory access
(RDMA) features. Yet, most applications rely on explicit
message passing for communications albeit their unwanted
overheads. The MPI-3.0 standard defines a programming in-
terface for exploiting RDMA networks directly, however, it’s
scalability and practicability has to be demonstrated in prac-
tice. In this work, we develop scalable bufferless protocols
that implement the MPI-3.0 specification. Our protocols
support scaling to millions of cores with negligible memory
consumption while providing highest performance and mini-
mal overheads. To arm programmers, we provide a spectrum
of performance models for all critical functions and demon-
strate the usability of our library and models with several
application studies with up to half a million processes. We
show that our design is comparable to, or better than UPC
and Fortran Coarrays in terms of latency, bandwidth, and
message rate. We also demonstrate application performance
improvements with comparable programming complexity.

Categories and Subject Descriptors
C.5.1 [Computer Systems Organization]: Computer Sys-
tem Implementation—Super computers; J.2 [Computer Ap-

plications]: Physical Sciences And Engineering—Physics

General Terms
Performance

1. MOTIVATION
Network interfaces evolve rapidly to implement a growing
set of features directly in hardware. A key feature of to-
day’s high-performance networks is remote direct memory

∗The author performed much of the implementation during
an internship at UIUC/NCSA while the analysis and doc-
umentation was performed during a scientific visit at ETH
Zurich. The author’s primary email address is gerro@hrz.tu-
chemnitz.de.

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for compo-
nents of this work owned by others than ACM must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from Permissions@acm.org. SC13 November
17-21, 2013, Denver, CO, USA Copyright 2013 ACM 978-1-4503-2378-
9/13/11...$15.00. http://dx.doi.org/10.1145/2503210.2503286

access (RDMA). RDMA enables a process to directly access
memory on remote processes without involvement of the op-
erating system or activities at the remote side. This hard-
ware support enables a powerful programming mode similar
to shared memory programming. RDMA is supported by
on-chip networks in, e.g., Intel’s SCC and IBM’s Cell sys-
tems, as well as off-chip networks such as InfiniBand [29,35],
IBM’s PERCS [2] or BlueGene/Q [20], Cray’s Gemini [1] and
Aries [9], or even RoCE over Ethernet [5].

From a programmer’s perspective, parallel programming
schemes can be split into three categories: (1) shared mem-
ory with implicit communication and explicit synchroniza-
tion, (2) message passing with explicit communication and
implicit synchronization (as side-effect of communication),
and (3) remote memory access and partitioned global ad-
dress space (PGAS) where synchronization and communi-
cation are managed independently.

Architects realized early that shared memory can often not
be efficiently emulated on distributed machines [18]. Thus,
message passing became the de facto standard for large-
scale parallel programs [27]. However, with the advent of
RDMA networks, it became clear that message passing over
RDMA incurs additional overheads in comparison with na-
tive remote memory access (RMA, aka. PGAS) program-
ming [6, 7, 28]. This is mainly due to message matching,
practical issues with overlap, and because fast message pass-
ing libraries over RDMA usually require different proto-
cols [39]: an eager protocol with receiver-side buffering of
small messages and a rendezvous protocol that synchronizes
the sender. Eager requires additional copies, and rendezvous
sends additional messages and may delay the sending pro-
cess.

In summary, directly programming RDMA hardware has
benefits in the following three dimensions: (1) time by avoid-
ing message matching and synchronization overheads, (2)
energy by reducing data-movement, e.g., it avoids additional
copies of eager messages, and (3) space by removing the need
for receiver buffering. Thus, several programming environ-
ments allow to access RDMA hardware more or less directly:
PGAS languages such as Unified Parallel C (UPC [36]) or
Fortran Coarrays [16] and libraries such as Cray SHMEM [3]
or MPI-2.2 One Sided [26]. A lot of experience with these
models has been gained in the past years [7,28,40] and sev-
eral key design principles for remote memory access (RMA)

MPI-3.0 One Sided Synchronization

passive targetactive target

MPI-3.0

MPI-2.2

P:{} → T

P:{} → T

P:{} → T

P:{k} → T

Sync Flush Flush all

Fence Post/Start/
Complete/Wait

Lock/Unlock Lock all/
Unlock all

P:{p} → T

P:{} → T

P:{} → T

Flush local Flush local all
P:{} → T P:{} → T

(a) Synchronization

MPI-3.0 One Sided Communication
MPI-3.0

MPI-2.2

accumulate

P:{s, o} → T P:{s, o} → T P:{s} → T

P:{s} → T P:{s} → T

P:{s, o} → T

bulk completion
fine grained
completion

Accumulate Get accumulate Fetch and op CAS

GetPut

(b) Communication
Figure 1: Overview of MPI-3.0 One Sided and associated cost functions. The figure shows abstract cost functions for all
operations in terms of their input domains. The symbol p denotes the number of processes, s is the data size, k is the
maximum number of neighbors, and o defines an MPI operation. The notation P : {p} → T defines the input space for the
performance (cost) function P . In this case, it indicates, for a specific MPI function, that the execution time depends only on
p. We provide asymptotic cost functions in Section 2 and parametrized cost functions for our implementation in Section 3.

programming evolved. The MPI Forum set out to define a
portable library interface to RMA programming using these
established principles. This new interface in MPI-3.0 [27]
extends MPI-2.2’s One Sided chapter to support the newest
generation of RDMA hardware.

However, the MPI standard only defines a programming in-
terface and does not mandate an implementation. Thus, it
has yet to be demonstrated that the new library interface
delivers comparable performance to compiled languages like
UPC and Fortran Coarrays and is able to scale to large pro-
cess numbers with small memory overheads. In this work, we
develop scalable protocols for implementing MPI-3.0 RMA
over RDMA networks. We demonstrate that (1) the per-
formance of a library implementation can be competitive to
tuned, vendor-specific compiled languages and (2) the inter-
face can be implemented on highly-scalable machines with
negligible memory overheads. In a wider sense, our work
answers the question if the MPI-3.0 RMA interface is a vi-
able candidate for moving into the post-petascale era.

Our key contributions are:

• We describe scalable protocols and a complete imple-
mentation for the novel MPI-3.0 RMA programming
interface requiring O(log p) time and space per process
on p processes.

• We provide a detailed performance evaluation and per-
formance models that can be used for algorithm devel-
opment and to demonstrate the scalability to future
systems.

• We demonstrate the benefits of RMA programming for
several motifs and real-world applications on a multi-
petaflop machine with full-application speedup of more
than 13% over MPI-1 using more than half a million
MPI processes.

2. SCALABLE PROTOCOLS FOR MPI-3.0

ONE SIDED OVER RDMA NETWORKS
We describe protocols to implement MPI-3.0 One Sided
purely based on low-level remote direct memory access
(RDMA). In all our protocols, we assume that we only have
small bounded buffer space at each process, no remote soft-
ware agent, and only put, get, and some basic atomic op-
erations for remote memory access. This makes our pro-
tocols applicable to all current RDMA networks and is also
forward-looking towards exascale interconnect architectures.

MPI-3.0 offers a plethora of functions with different per-
formance expectations and use-cases. We divide the RMA
functionality into three separate concepts: (1) window cre-
ation, (2) communication functions, and (3) synchronization
functions. In addition, MPI-3.0 specifies two memory mod-
els: a weaker model, called “separate”, to retain portability
and a stronger model, called “unified”, for highest perfor-
mance. In this work, we only consider the stronger unified
model since is it supported by all current RDMA networks.
More details on memory models can be found in the MPI
standard [27].

Figure 1a shows an overview of MPI’s synchronization func-
tions. They can be split into active target mode, in which
the target process participates in the synchronization, and
passive target mode, in which the target process is passive.
Figure 1b shows a similar overview of MPI’s communica-
tion functions. Several functions can be completed in bulk
with bulk synchronization operations or using fine-grained
request objects and test/wait functions. However, we ob-
served that the completion model only minimally affects lo-
cal overheads and is thus not considered separately in the
remainder of this work.

Figure 1 also shows abstract definitions of the performance
models for each synchronization and communication oper-
ation. The precise performance model for each function
depends on the exact implementation. We provide a de-
tailed overview of the asymptotic as well as exact perfor-
mance properties of our protocols and our implementation
in the next sections. The different performance characteris-
tics of communication and synchronization functions make
a unique combination of implementation options for each
specific use-case optimal. However, it is not always easy to
choose this best variant. The exact models can be used to
design such optimal implementations (or as input for model-
guided autotuning [10]) while the simpler asymptotic models
can be used in the algorithm design phase (cf. [19]).

To support post-petascale computers, all protocols need to
implement each function in a scalable way, i.e., consuming
O(log p) memory and time on p processes. For the purpose
of explanation and illustration, we choose to discuss a ref-
erence implementation as use-case. However, all protocols
and schemes discussed in the following can be used on any
RDMA-capable network.

2.1 Use-Case: Cray DMAPP and XPMEM
We introduce our implementation foMPI (fast one-sided
MPI), a fully-functional MPI-3.0 RMA library implementa-
tion for Cray Gemini (XK5, XE6) and Aries (XC30) sys-
tems. In order to maximize asynchronous progression and
minimize overhead, foMPI interfaces to the lowest available
hardware APIs.

For inter-node (network) communication, foMPI
1 uses the

lowest-level networking API of Gemini and Aries networks,
DMAPP (Distributed Memory Application), which has di-
rect access to the hardware (GHAL) layer. DMAPP pro-
vides an RDMA interface and each process can expose (reg-
ister) local memory regions. Accessing remote memory re-
quires a special key (which is returned by the registration
call). DMAPP offers put, get, and a limited set of atomic
memory operations, each of them comes in three categories:
blocking, explicit nonblocking, and implicit nonblocking. All
explicit nonblocking routines return a handle that can be
used to complete single operations, implicit nonblocking op-
erations can only be finished by bulk completion (gsync)
functions. DMAPP put and get can operate on 1, 4, 8 and
16 Byte chunks while atomic memory operations (AMO) al-
ways operate on 8 Bytes.

For intra-node communication, we use XPMEM [38], a
portable Linux kernel module that allows to map the mem-
ory of one process into the virtual address space of another.
Similar to DMAPP, processes can expose contiguous mem-
ory regions and other processes can attach (map) exposed
regions into their own address space. All operations can then
be directly implemented with load and store instructions, as
well as CPU atomics (e.g., using the x86 lock prefix). Since
XPMEM allows direct access to other processes’ memory,
we include it in the category of RDMA interfaces.

foMPI’s performance properties are self-consistent [21] and
thus avoid surprises for users. We now proceed to develop al-
gorithms to implement the window creation routines that ex-
pose local memory for remote access. After this, we describe
protocols for synchronization and communication functions
over RDMA networks.

2.2 Scalable Window Creation
A window is a region of process memory that is made ac-
cessible to remote processes. MPI-3.0 provides four col-
lective functions for creating different types of windows:
MPI Win create (traditional windows), MPI Win allocate

(allocated windows), MPI Win create dynamic (dynamic
windows), and MPI Win allocate shared (shared windows).
We assume that communication memory needs to be regis-
tered with the communication subsystem and that remote
processes require a remote descriptor that is returned from
the registration to access the memory. This is true for most
of today’s RDMA interfaces including DMAPP and XP-
MEM.

Traditional Windows. These windows expose existing
user-memory to remote processes. Each process can specify
an arbitrary local base address for the window and all re-

1
foMPI can be downloaded from

http://spcl.inf.ethz.ch/Research/Parallel Programming/foMPI

mote accesses are relative to this address. This essentially
forces an implementation to store all remote addresses sep-
arately. This storage may be compressed if addresses are
identical, however, it requires Ω(p) storage on each of the p

processes in the worst case.

Each process discovers intra-node and inter-node neighbors
and registers the local memory using XPMEM and DMAPP.
Memory descriptors and various information (window size,
displacement units, base pointer, et cetera) can be commu-
nicated with two MPI Allgather operations: the first with all
processes of the window to exchange DMAPP information
and the second with the intra-node processes to exchange
XPMEM information. Since traditional windows are fun-
damentally non-scalable, and only included in MPI-3.0 for
backwards-compatibility, their use is strongly discouraged.

Allocated Windows. Allow the MPI library to allocate
window memory and thus use a symmetric heap, where the
base addresses on all nodes are the same requiring only O(1)
storage. This can either be done by allocating windows in a
system-wide symmetric heap or with the following POSIX-
compliant protocol: (1) a leader (typically process zero)
chooses a random address which it broadcasts to all pro-
cesses in the window, and (2) each process tries to allocate
the memory with this specific address using mmap(). Those
two steps are repeated until the allocation was successful on
all processes (this can be checked with MPI Allreduce). Size
and displacement unit can now be stored locally at each pro-
cess. This mechanism requires O(1) memory and O(log p)
time (with high probability).

Dynamic Windows. These windows allow the dynamic at-
tach and detach of memory regions using MPI Win attach

andMPI Win detach. Attach and detach operations are non-
collective. In our implementation, attach registers the mem-
ory region and inserts the information into a linked list and
detach removes the region from the list. Both operations
require O(1) memory per region.

The access of the list of memory regions on a target is purely
one-sided using a local cache of remote descriptors. Each
process maintains an id counter, which will be increased
in case of an attach or detach operation. A process that
attempts to communicate with the target first reads the id
(with a get operation) to check if its cached information is
still valid. If so, it finds the remote descriptor in its local
list. If not, the cached information are discarded, the remote
list is fetched with a series of remote operations and stored
in the local cache.

Optimizations can be done similar to other distributed cache
protocols. For example, instead of the id counter, each
process could maintain a list of processes that have a cached
copy of its local memory descriptors. Before returning from
detach, a process notifies all these processes to invalidate
their cache and discards the remote process list. For each
communication attempt, a process has to first check if the
local cache has been invalidated (in which case it will be
reloaded). Then the local cache is queried for the remote
descriptor. If the descriptor is missing, there has been an
attach at the target and the remote descriptor is fetched

into the local cache. After a cache invalidation or a first
time access, a process has to register itself on the target for
detach notifications. We explain a scalable data structure
that can be used for the remote process list in the General
Active Target Synchronization part (see Figure 2c).

The optimized variant enables better latency for communi-
cation functions, but has a small memory overhead and is
suboptimal for frequent detach operations.

Shared Memory Windows. Shared memory windows can
be implemented using POSIX shared memory or XPMEM
as described in [12] with constant memory overhead per
core. Performance is identical to our direct-mapped (XP-
MEM) implementation and all operations are compatible
with shared memory windows.

We now show novel protocols to implement synchronization
modes in a scalable way on pure RDMA networks without
remote buffering.

2.3 Scalable Window Synchronization
MPI differentiates between exposure and access epochs. A
process starts an exposure epoch to allow other processes
to access its memory. In order to access exposed memory
at a remote target, the origin process has to be in an ac-
cess epoch. Processes can be in access and exposure epochs
simultaneously and exposure epochs are only defined for ac-
tive target synchronization (in passive target, window mem-
ory is always exposed).

Fence. MPI Win fence, called collectively by all processes,
finishes the previous exposure and access epoch and opens
the next exposure and access epoch for the whole window.
An implementation must guarantee that all remote mem-
ory operations are committed before it leaves the fence call.
Our implementation uses an x86 mfence instruction (XP-
MEM) and DMAPP bulk synchronization (gsync) followed
by an MPI barrier to ensure global completion. The asymp-
totic memory bound is O(1) and, assuming a good barrier
implementation, the time bound is O(log p).

General Active Target Synchronization. synchro-
nizes a subset of processes of a window. Expo-
sure (MPI Win post/MPI Win wait) and access epochs
(MPI Win start/MPI Win complete) can be opened and
closed independently. However, a group argument is
associated with each call that starts an epoch and it states
all processes participating in the epoch. The calls have to
guarantee correct matching, i.e., if a process i specifies a
process j in the group argument of the post call, then the
next start call at process j that has process i in the group
argument matches the post call.

Since our RMA implementation cannot assume buffer space
for remote messages, it has to ensure that all processes in
the group argument of the start call have called a matching
post before the start returns. Similarly, the wait call has
to ensure that all matching processes have called complete.
Thus, calls to MPI Win start and MPI Win wait may block,
waiting for the remote process. Both synchronizations are
required to ensure integrity of the accessed data during the

epochs. The MPI specification forbids matching configura-
tions where processes wait cyclically (deadlocks).

(a) Source Code

(b) Data Structures

(c) Free-Storage Management: Protocol to acquire a free element
in a remote matching list, denoted as ”free-mem” below

(d) Possible Execution of the Complete Protocol

Figure 2: Example of General Active Target Synchroniza-
tion. The numbers in the brackets for MPI Win start and
MPI Win post indicate the processes in the access or expo-
sure group.

We now describe a scalable implementation of the match-
ing protocol with a time and memory complexity of O(k)
if each process has at most k neighbors across all epochs.
In addition, we assume k is known to the implementation.
The scalable algorithm can be described at a high level as
follows: each process i that posts an epoch announces itself
to all processes j1, . . . , jl in the group argument by adding i

to a list local to the processes j1, . . . , jl. Each process j that
tries to start an epoch waits until all processes i1, . . . , im in
the group argument are present in its local list. The main
complexity lies in the scalable storage of this neighbor list,
needed for start, which requires a remote free-storage man-
agement scheme (see Figure 2c). The wait call can simply

be synchronized with a completion counter. A process call-
ing wait will not return until the completion counter reaches
the number of processes in the specified group. To enable
this, the complete call first guarantees remote visibility of
all issued RMA operations (by calling mfence or DMAPP’s
gsync) and then increases the completion counter at all pro-
cesses of the specified group.

Figure 2a shows an example program with two distinct
matches to access three processes from process 0. The first
epoch on process 0 matches with processes 1 and 2 and the
second epoch matches only with process 3. Figure 2b shows
the necessary data structures, the free memory buffer, the
matching list, and the completion counter. Figure 2c shows
the part of the protocol to acquire a free element in a remote
matching list and Figure 2d shows a possible execution of
the complete protocol on four processes.

If k is the size of the group, then the number of messages
issued by post and complete is O(k) and zero for start and
wait. We assume that k ∈ O(log p) in scalable programs [11].

Lock Synchronization. We now describe a low-overhead
and scalable strategy to implement shared global, and
shared and exclusive process-local locks on RMA systems
(the MPI-3.0 specification does not allow exclusive global
lock all). We utilize a two-level lock hierarchy: one global
lock variable (at a designated process, called master) and p

local lock variables (one lock on each process). We assume
that the word-size of the machine, and thus each lock vari-
able, is 64 bits. Our scheme also generalizes to other t bit
word sizes as long as the number of processes is not more

than 2⌊
t

2
⌋.

Each local lock variable is used to implement a reader-writer
lock, which allows only one writer (exclusive lock), but many
readers (shared locks). The highest order bit of the lock
variable indicates a write access, while the other bits are
used to count the number of shared locks held by other pro-
cesses (cf. [23]). The global lock variable is split into two
parts. The first part counts the number of processes hold-
ing a global shared lock in the window and the second part
counts the number of exclusively locked processes. Both
parts guarantee that there are only accesses of one type (ei-
ther exclusive or lock-all) concurrently. This data structure
enables all lock operations to complete in O(1) steps if a lock
can be acquired immediately. Figure 3a shows the structure
of the local and global lock variables (counters).

Figure 3b shows an exemplary lock scenario for three pro-
cesses. We do not provide an algorithmic description of the
protocol due to the lack of space (the source-code is available
online). However, we describe a locking scenario to foster
understanding of the protocol. Figure 3c shows a possible
execution schedule for the scenario from Figure 3b. Please
note that we permuted the order of processes to (1,0,2) in-
stead of the intuitive (0,1,2) to minimize overlapping lines
in the figure.

Process 1 starts a lock all epoch by increasing the global
shared counter atomically. Process 2 has to wait with its
exclusive lock request until Process 1 finishes its lock all
epoch. The waiting is performed by an atomic fetch and

(a) Data Structures

(b) Source Code

(c) Possible Schedule

Figure 3: Example of Lock Synchronization

add. If the result of this operation finds any global shared
lock then it backs off its request and does not enter the lock,
and proceeds to retry. If there is no global shared lock then it
enters its local lock phase. An acquisition of a shared lock on
a specific target (MPI Win lock) only involves the local lock
on the target. The origin process (e.g., Process 0) fetches
and increases the lock in one atomic operation. If the writer
bit is not set, the origin can proceed. If an exclusive lock
is present, the origin repeatedly (remotely) reads the lock
until the writer finishes his access. All waits/retries can be
performed with exponential back off to avoid congestion.

Summarizing the protocol: For a local exclusive lock, the
origin process needs to ensure two invariants: (1) no global
shared lock can be held or acquired during the local exclu-
sive lock and (2) no local shared or exclusive lock can be
held or acquired during the local exclusive lock. For the
first part, the locking process fetches the lock variable from
the master process and also increases the writer part in one
atomic operation to register its wish for an exclusive lock. If
the fetched value indicates lock all accesses, then the origin
backs off by decreasing the writer part of the global lock.
In case there is no global reader, the origin proceeds to the
second invariant and tries to acquire an exclusive local lock
on its target using compare-and-swap with zero (cf. [23]). If
this succeeds, the origin acquired the lock and can proceed.
In the example, Process 2 succeeds at the second attempt to
acquire the global lock but fails to acquire the local lock and
needs to back off by releasing its exclusive global lock. Pro-
cess 2 will repeat this two-step operation until it acquired
the exclusive lock. If a process already holds any exclusive
lock, then it can immediately proceed to invariant two.

When unlocking (MPI Win unlock) a shared lock, the origin
only has to atomically decrease the local lock on the target.
In case of an exclusive lock it requires two steps. The first
step is the same as in the shared case, but if the origin does
not hold any additional exclusive locks, it has to release its

global lock by atomically decreasing the writer part of the
global lock.

The acquisition or release of a shared lock on all processes of
the window (MPI Win lock all/MPI Win unlock all) is simi-
lar to the shared case for a specific target, except it targets
the global lock.

If no exclusive locks exist, then shared locks (both
MPI Win lock and MPI Win lock all) only take one remote
atomic update operation. The number of remote requests
while waiting can be bound by using MCS locks [24]. The
first exclusive lock will take in the best case two atomic com-
munication operations. This will be reduced to one atomic
operation if the origin process already holds an exclusive
lock. Unlock operations always cost one atomic operation,
except for the last unlock in an exclusive case with one extra
atomic operation for releasing the global lock. The memory
overhead for all functions is O(1).

Flush. Flush guarantees remote completion and is thus one
of the most performance-critical functions on MPI-3.0 RMA
programming. foMPI’s flush implementation relies on the
underlying interfaces and simply issues a DMAPP remote
bulk completion and an x86 mfence. All flush operations
(MPI Win flush, MPI Win flush local, MPI Win flush all, and
MPI Win flush all local) share the same implementation and
add only 78 CPU instructions (x86) to the critical path.

2.4 Communication Functions
Communication functions map nearly directly to low-level
hardware functions. This is a major strength of RMA pro-
gramming. In foMPI, put and get simply use DMAPP put
and get for remote accesses or local memcpy for XPMEM ac-
cesses. Accumulates either use DMAPP atomic operations
(for many common integer operations on 8 Byte data) or
fall back to a simple protocol that locks the remote window,
gets the data, accumulates it locally, and writes it back.
This fallback protocol is necessary to avoid involvement of
the receiver for true passive mode. It can be improved if we
allow buffering (enabling a space-time trade-off [41]) such
that active-mode communications can employ active mes-
sages to perform the remote operations atomically.

Handling Datatypes. Our implementation supports arbi-
trary MPI datatypes by using the MPITypes library [32].
In each communication, the datatypes are split into the
smallest number of contiguous blocks (using both, the origin
and target datatype) and one DMAPP operation or memory
copy (XPMEM) is initiated for each block.

While offering the full functionality of the rich MPI inter-
face, our implementation is highly tuned for the common
case of contiguous data transfers using intrinsic datatypes
(e.g., MPI DOUBLE). Our full implementation adds only
173 CPU instructions (x86) in the optimized critical path
of MPI Put and MPI Get. We also utilize SSE-optimized
assembly code to perform fast memory copies for XPMEM
communication.

2.5 Blocking Calls
The MPI standard allows an implementation to block in
several synchronization calls. Each correct MPI program
should thus never deadlock if all those calls are blocking.
However, if the user knows the detailed behavior, she can
tune for performance, e.g., if locks block, then the user may
want to keep lock/unlock regions short. We describe here
which calls may block depending on other processes and
which calls will wait for other processes to reach a certain
state. We point out that, in order to write (performance)
portable programs, the user cannot rely on such knowledge
in general!

With our protocols, (a) MPI Win fence waits for all other
window processes to enter the MPI Win fence call, (b)
MPI Win start waits for matching MPI Win post calls from
all processes in the access group, (c) MPI Win wait waits for
the calls to MPI Win complete from all processes in the ex-
posure group, and (d) MPI Win lock and MPI Win lock all

wait until they acquired the desired lock.

3. DETAILED PERFORMANCE MODEL-

ING AND EVALUATION
We now describe several performance features of our pro-
tocols and implementation and compare it to Cray MPI’s
highly tuned point-to-point as well as its relatively untuned
one sided communication. In addition, we compare foMPI

with two major HPC PGAS languages: UPC and Fortran
2008 with Coarrays, both specially tuned for Cray systems.
We did not evaluate the semantically richer Coarray Fortran
2.0 [22] because no tuned version was available on our sys-
tem. We execute all benchmarks on the Blue Waters system,
using the Cray XE6 nodes only. Each compute node con-
tains four 8-core AMD Opteron 6276 (Interlagos) 2.3 GHz
and is connected to other nodes through a 3D-Torus Gem-
ini network. We use the Cray Programming Environment
4.1.40 for MPI, UPC, and Fortran Coarrays, and GNU gcc
4.7.2 when features that are not supported by Cray’s C com-
piler are required (e.g., inline assembly for a fast x86 SSE
copy loop).

Our benchmark measures the time to perform a single oper-
ation (for a given process count and/or data size) at all pro-
cesses and adds the maximum across all ranks to a bucket.
The run is repeated 1,000 times to gather statistics. We
use the cycle accurate x86 RDTSC counter for each mea-
surement. All performance figures show the medians of all
gathered points for each configuration.

3.1 Latency and Bandwidth
Comparing latency and bandwidth between one sided RMA
communication and point-to-point communication is not al-
ways fair since RMA communication may require extra syn-
chronization to notify the target. All latency results pre-
sented for RMA interfaces are guaranteeing remote com-
pletion (the message is committed in remote memory) but
no synchronization. We analyze synchronization costs sepa-
rately in Section 3.2.

1

10

100

8 64 512 4096 32768 262144
Size [Bytes]

L
a
te

n
c
y
 [
u
s
]

Transport Layer
FOMPI MPI−3.0
Cray UPC
Cray MPI−2.2
Cray MPI−1
Cray CAF

1

2

3

4

8 16 32 64

DMAPP

protocol

change

(a) Latency inter-node Put

1

10

100

8 64 512 4096 32768 262144
Size [Bytes]

L
a
te

n
c
y
 [
u
s
]

Transport Layer
FOMPI MPI−3.0
Cray UPC
Cray MPI−2.2
Cray MPI−1
Cray CAF

2.0

2.4

2.8

8 16 32 64

DMAPP

protocal

change

(b) Latency inter-node Get

0.1

1.0

10.0

100.0

8 64 512 4096 32768 262144
Size [Bytes]

L
a
te

n
c
y
 [
u
s
]

Transport Layer
FOMPI MPI−3.0
Cray UPC
Cray MPI−2.2
Cray MPI−1
Cray CAF

0.4

0.8

1.2

1.6

8 16 32 64

(c) Latency intra-node Put/Get
Figure 4: Latency comparison for remote put/get for DMAPP and XPMEM (shared memory) communication. Note that
MPI-1 Send/Recv implies remote synchronization while UPC, Fortran Coarrays and MPI-2.2/3.0 only guarantee consistency.

0

25

50

75

100

8 64 512 4096 32768 262144 2097152
Size [Bytes]

O
ve

rl
a
p
 [
%

]

Transport Layer
FOMPI MPI−3.0
Cray UPC
Cray MPI−2.2

DMAPP proto-

col change

(a) Overlap inter-node

0.001

0.010

0.100

1.000

8 64 512 4096 32768 262144
Message Size [Bytes]

M
e
s
s
a
g
e
 R

a
te

 [
M

ill
io

n
 M

e
s
./
S

e
c
.]

Transport Layer
FOMPI MPI−3.0
Cray UPC
Cray MPI−2.2
Cray MPI−1
Cray CAF

1.0

1.5

2.0

2.5

8 16 32 64

DMAPP proto-

col change

(b) Message Rate inter-node

1e−03

1e−02

1e−01

1e+00

1e+01

8 64 512 4096 32768 262144
Message Size [Bytes]

M
e
s
s
a
g
e
 R

a
te

 [
M

ill
io

n
 M

e
s
./
S

e
c
.]

Transport Layer
FOMPI MPI−3.0
Cray UPC
Cray MPI−2.2
Cray MPI−1
Cray CAF

2.5

5.0

7.5

10.0

12.5

8 16 32 64

(c) Message Rate intra-node
Figure 5: Communication/computation overlap for Put over DMAPP, Cray MPI-2.2 has much higher latency up to 64 kB (cf.
Figure 4a), thus allows higher overlap. XPMEM implementations do not support overlap due to the shared memory copies.
Figures (b) and (c) show message rates for put communication for all transports.

We measure MPI-1 point-to-point latency with standard
ping-pong techniques. For Fortran Coarrays, we use a re-
mote assignment of a double precision array of size SZ:

double precision , dimension (SZ) : : buf [∗]
do memsize in a l l s i z e s<SZ

buf (1 : memsize) [2] = buf (1 : memsize)
sync memory

end do

In UPC, we use a single shared array and the intrinsic func-
tion memput, we also tested shared pointers with very sim-
ilar performance:

shared [SZ] double ∗buf ;
buf = up c a l l a l l o c (2 , SZ) ;
for (s i z e=1 ; s i z e<=SZ ; s i z e ∗=2) {

upc memput(&buf [SZ] , &pr i v bu f [0] , s i z e) ;
upc fence ;

}

In MPI-3.0 RMA, we use an allocated window and passive
target mode with flushes:

MPI Win allocate (SZ , . . . , &buf , &win) ;
MPI Win lock(excl , 1 , MPI INFO NULL, win) ;
for (s i z e=1 ; s i z e<=SZ ; s i z e ∗=2) {

MPI Put(&buf [0] , s i z e , . . . , 1 , . . . , win) ;
MPI Win flush(1 , win) ;

}
MPI Win unlock (1 , win) ;

Figures 4a, 4b, and 4c show the latency for varying message
sizes for intra- and inter-node put, get. Due to the highly
optimized fast-path, foMPI has more than 50% lower la-
tency than other PGAS models while achieving the same
bandwidth for larger messages. The performance func-
tions (cf. Figure 1) are: Pput = 0.16ns · s + 1µs and
Pget = 0.17ns · s+ 1.9µs.

3.1.1 Overlapping Computation
The overlap benchmark measures how much of the commu-
nication time can be overlapped with computation. It cal-
ibrates a computation loop to consume slightly more time
than the latency. Then it places computation between the
communication and the synchronization and measures the
combined time. The ratio of overlapped computation is
then computed from the measured communication, compu-
tation, and combined times. Figure 5a shows the ratio of the
communication that can be overlapped for Cray’s MPI-2.2,
UPC, and foMPI MPI-3.0.

3.1.2 Message Rate
The message rate benchmark is very similar to the latency
benchmark, however, it benchmarks the start of 1,000 trans-
actions without synchronization. This determines the over-
head for starting a single operation. The Cray–specific
PGAS pragma defer_sync was used in the UPC and For-
tran Coarrays versions for full optimization. Figures 5b
and 5c show the message rates for DMAPP and XPMEM
(shared memory) communications, respectively. Injecting a
single 8-Byte message costs 416ns for inter-node and 80ns
(≈190 instructions) for intra-node case.

1

10

1000

1000000

1 8 64 512 4096 32768 262144
Number of Elements

L
a
te

n
c
y
 [
u
s
]

Transport Layer
FOMPI SUM
Cray UPC aadd
FOMPI MIN
FOMPI CAS
Cray UPC CAS

2

4

6

8

10

1 2 4

2.41 us

3.53

 us

(a) Atomic Operation Performance

1

10

100

1000

10000

2 8 32 128 512 2k 8k
Number of Processes

L
a

te
n

c
y
 [

u
s
]

Global Synchronization
FOMPI Win_fence
Cray UPC barrier
Cray CAF sync_all
Cray MPI Win_fence

(b) Latency for Global Synchronization

1

10

100

2 8 32 128 512 2k 8k 32k 128k
Number of Processes

L
a
te

n
c
y
 [
u
s
]

PSCW

FOMPI
Cray MPI

intra-node inter-node

(c) Latency for PSCW (Ring Topology)
Figure 6: Performance of atomic accumulate operations and synchronization latencies.

3.1.3 Atomics
Figure 6a shows the performance of the DMAPP-accelerated
MPI SUM of 8-Byte elements, a non-accelerated MPI MIN,
and 8-Byte CAS. The performance functions are Pacc,sum =
28ns · s + 2.4µs, Pacc,min = 0.8ns · s + 7.3µs, and PCAS =
2.4µs. The DMAPP acceleration lowers the latency for small
messages while the locked implementation exhibits a higher
bandwidth. However, this does not consider the serialization
due to the locking.

3.2 Synchronization Schemes
In this section, we study the overheads of the various syn-
chronization modes. The different modes have nontrivial
trade-offs. For example General Active Target Synchroniza-
tion performs better if small groups of processes are synchro-
nized and fence synchronization performs best if the syn-
chronization groups are essentially as big as the full group at-
tached to the window. However, the exact crossover point is
a function of the implementation and system. While the ac-
tive target mode notifies the target implicitly that its mem-
ory is consistent, in passive target mode, the user has to do
this explicitly or rely on synchronization side effects of other
functions (e.g., allreduce).

We thus study and model the performance of all synchro-
nization modes and notification mechanisms for passive tar-
get. Our performance models can be used by the program-
mer to select the best option for the problem at hand.

Global Synchronization. Global synchronization is of-
fered by fences in MPI-2.2 and MPI-3.0. It can be di-
rectly compared to Fortran Coarrays sync all and UPC’s
upc_barrier which also synchronize the memory at all
processes. Figure 6b compares the performance of foMPI

with Cray’s MPI-2.2, UPC, and Fortran Coarrays imple-
mentations. The performance function for foMPI’s fence
implementation is: Pfence = 2.9µs · log

2
(p).

General Active Target Synchronization. Only MPI-
2.2 and MPI-3.0 offer General Active Target (also
called “PSCW”) synchronization. A similar mechanism
(sync images) for Fortran Coarrays was unfortunately not
available on our test system. Figure 6c shows the perfor-
mance for Cray MPI and foMPI when synchronizing an
one-dimensional Torus (ring) where each process has exactly
two neighbors (k=2). An ideal implementation would ex-
hibit constant time for this benchmark. We observe system-
atically growing overheads in Cray’s implementation as well

as system noise [14, 30] on runs with more than 1,000 pro-
cesses with foMPI. We model the performance with varying
numbers of neighbors and foMPI’s PSCW synchronization
costs involving k off-node neighbor are Ppost = Pcomplete =
350ns · k, and Pstart = 0.7µs, Pwait = 1.8µs,

Passive Target Synchronization. The performance of
lock/unlock is constant in the number of processes (due
to the global/local locking) and thus not graphed. The
performance functions are Plock,excl = 5.4µs, Plock,shrd =
Plock all = 2.7µs, Punlock = 0.4µs, Pflush = 76ns, and
Psync = 17ns.

We demonstrated the performance of our protocols and im-
plementation using microbenchmarks comparing to other
RMA and message passing implementations. The exact per-
formance models for each call can be utilized to design and
optimize parallel applications, however, this is outside the
scope of this paper. To demonstrate the usability and per-
formance of our protocols for real applications, we continue
with a large-scale application study.

4. APPLICATION EVALUATION
We selected two motif applications to compare our protocols
and implementation with the state of the art: a distributed
hashtable representing many big data and analytics appli-
cations and a dynamic sparse data exchange representing
complex modern scientific applications. We also analyze the
application MIMD Lattice Computation (MILC), a full pro-
duction code with several hundred thousand source lines of
code, as well as a 3D FFT code.

In all codes, we tried to keep most parameters constant
to compare the performance of PGAS languages, MPI-1,
and MPI-3.0 RMA. Thus, we did not employ advanced con-
cepts, such as MPI datatypes or process topologies, that are
not available in all implementations (e.g., UPC and Fortran
Coarrays).

4.1 Distributed Hashtable
Our simple hashtable represents data analytics applications
that often require random access in distributed structures.
We compare MPI point-to-point communication, UPC, and
MPI-3.0 RMA. In the implementation, each process man-
ages a part of the hashtable called the local volume consist-
ing of a table of elements and an additional overflow heap
to store elements after collisions. The table and the heap

0.025

0.100

1.000

10.000

100.000

2 8 32 128 512 2048 8192 32768
Number of Processes

B
ill

io
n
 I
n
s
e
rt

s
 p

e
r

S
e
c
o
n
d

Transport Layer
FOMPI MPI−3.0
Cray UPC
Cray MPI−1

intra-node inter-node

(a) Inserts per second for inserting 16k el-
ements per process including synchroniza-
tion.

25

100

1000

10000

100000

8 32 128 512 2048 8192 32768
Number of Processes

T
im

e
 [
u
s
]

Transport Layer
FOMPI MPI−3.0
LibNBC
Cray MPI−2.2
Cray Reduce_scatter
Cray Alltoall

(b) Time to perform one dynamic sparse
data exchange (DSDE) with 6 random
neighbors

200

400

800

1600

1024 4096 16384 65536
Number of Processes

P
e
rf

o
rm

a
n
c
e
 [
G

F
lo

p
/s

]

Transport Layer
FOMPI MPI−3.0
Cray UPC
Cray MPI−1

1
8
.4
%

2
3
.8
% 1

0
.3
%

4
0
.0
% 3

9
.6
%

4
5
.7
%

1
0
1
.8
%

(c) 3D FFT Performance. The annotations
represent the improvement of foMPI over
MPI-1.

Figure 7: Application Motifs: (a) hashtable representing data analytics applications and key-value stores, (b) dynamic sparse
data exchange representing graph traversals, n-body methods, and rapidly evolving meshes [15], (c) full parallel 3D FFT

are constructed using fixed-size arrays. In order to avoid
traversing of the arrays, pointers to most recently inserted
items as well as to the next free cells are stored along with
the remaining data in each local volume. The elements of
the hashtable are 8-Byte integers.

The MPI-1 implementation is based on MPI Send and Recv
using an active message scheme. Each process that is go-
ing to perform a remote operation sends the element to be
inserted to the owner process which invokes a handle to pro-
cess the message. Termination detection is performed using
a simple protocol where each process notifies all other pro-
cesses of its local termination. In UPC, table and overflow
list are placed in shared arrays. Inserts are based on propri-
etary (Cray–specific extensions) atomic compare and swap
(CAS) operations. If a collision happens, the losing thread
acquires a new element in the overflow list by atomically
incrementing the next free pointer. It also updates the last
pointer using a second CAS. UPC fences are used to ensure
memory consistency. The MPI-3.0 implementation is rather
similar to the UPC implementation, however, it uses MPI-
3.0’s standard atomic operations combined with flushes.

Figure 7a shows the inserts per second for a batch of 16k
operations per process, each adding an element to a ran-
dom key (which resides at a random process). MPI-1’s per-
formance is competitive for intra-node communications but
inter-node overheads significantly impact performance and
the insert rate of a single node cannot be achieved with even
32k cores (optimizations such as coalescing or message rout-
ing and reductions [37] would improve this rate but signifi-
cantly complicate the code). foMPI and UPC exhibit sim-
ilar performance characteristics with foMPI being slightly
faster for shared memory accesses. The spikes at 4k and
16k nodes are caused by different job layouts in the Gemini
torus and different network congestion.

4.2 Dynamic Sparse Data Exchange
The dynamic sparse data exchange (DSDE) represents a
common pattern in irregular applications [15]. DSDE is used
when a set of senders has data destined to arbitrary target
processes but no process knows the volume or sources of
data it needs to receive. The DSDE pattern is very com-
mon in graph-based computations, n-body simulations, and
adaptive mesh refinement codes. Due to the lack of space,
we use a DSDE microbenchmark as proxy for the commu-
nication performance of such applications [15].

In the DSDE benchmark, each process picks k targets ran-
domly and attempts to send eight Bytes to each target.
The DSDE protocol can either be implemented using all-
toall, reduce scatter, a nonblocking barrier combined with
synchronous sends, or one-sided accumulates in active tar-
get mode. The algorithmic details of the protocols are de-
scribed in [15]. Here, we compare all protocols of this appli-
cation microbenchmark with the Cray MPI-2.2 and foMPI

MPI-3.0 implementations. Figure 7b shows the times for the
complete exchange using the four different protocols (the ac-
cumulate protocol is tested with Cray’s MPI-2.2 implemen-
tation and foMPI) and k = 6 random neighbors per pro-
cess. The RMA-based implementation is competitive with
the nonblocking barrier, which was proved optimal in [15].
foMPI’s accumulates have been tuned for Cray systems
while the nonblocking barrier we use is a generic dissem-
ination algorithm. The performance improvement relative
to other protocols is always significant and varies between a
factor of two and nearly two orders of magnitude.

4.3 3D Fast Fourier Transform
We now discuss how to exploit overlap of computation and
communication with our low-overhead implementation in a
three-dimensional Fast Fourier Transformation. We use the
MPI and UPC versions of the NAS 3D FFT benchmark.
Nishtala et al. and Bell et al. [7,28] demonstrated that over-
lap of computation and communication can be used to im-
prove the performance of a 2D-decomposed 3D FFT. We
compare the default“nonblocking MPI”with the“UPC slab”
decomposition, which starts to communicate the data of a
plane as soon as it is available and completes the communi-
cation as late as possible. For a fair comparison, our foMPI

implementation uses the same decomposition and commu-
nication scheme like the UPC version and required minimal
code changes resulting in the same code complexity.

Figure 7c shows the performance for the strong scaling class
D benchmark (2048× 1024× 1024) on different core counts.
UPC achieves a consistent speedup over MPI-1, mostly due
to the overlap of communication and computation. foMPI

has a slightly lower static overhead than UPC and thus en-
ables better overlap (cf. Figure 5a), resulting in a slightly
better performance of the FFT.

4.4 MIMD Lattice Computation
The MIMD Lattice Computation (MILC) Collaboration
studies Quantum Chromodynamics (QCD), the theory of
strong interaction [8]. The group develops a set of applica-
tions, known as the MILC code. In this work, we use version
7.6.3 as a base. That code regularly gets one of the largest
allocations of computer time at US NSF supercomputer cen-
ters. The su3 rmd code, which is part of the SPEC CPU2006
and SPEC MPI benchmarks, is included in the MILC code.

The code performs a stencil computation on a four-
dimensional rectangular grid. Domain decomposition is per-
formed in all four dimensions to minimize the surface-to-
volume ratio. In order to keep data consistent, neighbor
communication is performed in all eight directions, in addi-
tion, global allreductions are done regularly to check conver-
gence of a solver. The most time consuming part of MILC is
the conjugate gradient solver which uses nonblocking MPI
communication overlapped with local computations.

The performance of the full code and the solver have been
analyzed in detail in [4]. Several optimizations have been
applied, and a UPC version that demonstrated significant
speedups is available [34]. This version replaces the MPI
communication with a simple remote memory access proto-
col. A process notifies all neighbors with a separate atomic
add as soon as the data in the “send” buffer is initialized.
Then all processes wait for this flag before they get (using
Cray’s proprietary upc_memget_nb) the communication
data into their local buffers. This implementation serializes
the data from the application buffer into UPC’s communica-
tion buffers. Our MPI-3.0 implementation follows the same
scheme to ensure a fair comparison. We place the communi-
cation buffers into MPI windows and use MPI Fetch and op

and MPI Get with a single lock all epoch and MPI Win flush

to perform the communications. The necessary changes are
small and the total number of source code lines is equivalent
to the UPC version, We remark that additional optimiza-
tions may be possible with MPI, for example, one could
use MPI datatypes to communicate the data directly from
the application buffers resulting in additional performance
gains [13]. However, since our goal is to compare to the UPC
version, we only investigate the packed version here.

Figure 8 shows the execution time of the whole application
for a weak-scaling problem with a local lattice of 43 × 8,
a size very similar to the original Blue Waters Petascale
benchmark. Some phases (e.g., CG) of the computation
execute up to 45% faster, however, we chose to report full-
application performance. The UPC and foMPI codes ex-
hibit essentially the same performance, while the UPC code
uses Cray-specific tuning and the MPI-3.0 code is portable
to different architectures. The full-application performance
gain over the MPI-1 version is more than 15% for some con-
figurations. The application was scaled successfully up to
524,288 processes with all implementations. This result and
our microbenchmark demonstrate the scalability and per-
formance of our protocols and that the new RMA semantics
can be used to improve full applications to achieve perfor-
mance close to the hardware limitations in a fully portable
way. Since most of those existing applications are written
in MPI, a step-wise transformation can be used to optimize
most critical parts first.

100

200

400

800

4k 8k 16k 32k 64k 128k 256k 512k
Number of Processes

A
p

p
lic

a
ti
o

n
 C

o
m

p
le

ti
o

n
 T

im
e

 [
s
]

Transport Layer
FOMPI MPI−3.0
Cray UPC
Cray MPI−1

7
.9
%

6
.5
%

1
0
.3
%

1
3
.2
%

1
4
.8
%

5
.3
%

1
5
.2
%

1
3
.8
%

Figure 8: MILC: Full application execution time. The an-
notations represent the improvement of foMPI and UPC
over MPI-1.

5. RELATED WORK
The intricacies of MPI-2.2 RMA implementations over In-
finiBand networks have been discussed by Jian et al. and
Santhanaraman et al. [17,33]. Zhao et al. describe an adap-
tive strategy to switch from eager to lazy modes in active
target synchronizations in MPICH 2 [41]. This mode could
be used to speed up foMPI’s atomics that are not supported
in hardware.

PGAS programming has been investigated in the context
of UPC and Fortran Coarrays. An optimized UPC Barnes
Hut implementation shows similarities to MPI-3.0 RMA pro-
gramming by using bulk vectorized memory transfers com-
bined with vector reductions instead of shared pointer ac-
cesses [40]. Nishtala at al. and Bell et al. used overlapping
and one-sided accesses to improve FFT performance [7,28].
Highly optimized PGAS applications often use a style that
can easily be adapted to MPI-3.0 RMA.

The applicability of MPI-2.2 One Sided has also been
demonstrated for some applications. Mirin et al. discuss
the usage of MPI-2.2 One Sided coupled with threading to
improve the Community Atmosphere Model (CAM) [25].
Potluri et al. show that MPI-2.2 One Sided with overlap
can improve the communication in a Seismic Modeling ap-
plication [31]. However, we demonstrated new MPI-3.0 fea-
tures that can be used to further improve performance and
simplify implementations.

6. DISCUSSION AND CONCLUSIONS
In this work, we demonstrated how MPI-3.0 can be imple-
mented over RDMA networks to achieve similar performance
to UPC and Fortran Coarrays while offering all of MPI’s
convenient functionality (e.g., Topologies and Datatypes).
We provide detailed performance models, that help choos-
ing among the multiple options. For example, a user can use
our models to decide whether to use Fence or PSCW syn-
chronization (if Pfence > Ppost +Pcomplete +Pstart+Pwait,
which is true for large k). This is just one example for the
possible uses of our detailed performance models.

We studied all overheads in detail and provide instruction
counts for all critical synchronization and communication
functions, showing that the MPI interface adds merely be-
tween 150 and 200 instructions in the fast path. This demon-

strates that a library interface like MPI is competitive with
compiled languages such as UPC and Fortran Coarrays. Our
implementation proved to be scalable and robust while run-
ning on 524,288 processes on Blue Waters speeding up a full
application run by 13.8% and a 3D FFT on 65,536 processes
by a factor of two.

We expect that the principles and extremely scalable syn-
chronization algorithms developed in this work will act as
a blue print for optimized MPI-3.0 RMA implementations
over future large-scale RDMA networks. We also expect
that the demonstration of highest performance to users will
quickly increase the number of MPI RMA programs.

Acknowledgments
We thank Timo Schneider for early help in the project, Greg

Bauer and Bill Kramer for support with Blue Waters, Cray’s

Duncan Roweth and Roberto Ansaloni for help with Cray’s

PGAS environment, Nick Wright for the UPC version of MILC,

and Paul Hargrove for the UPC version of NAS-FT. This work

was supported in part by the DOE Office of Science, Advanced

Scientific Computing Research, under award number DE-FC02-

10ER26011, program manager Lucy Nowell. This work is par-

tially supported by the Blue Waters sustained-petascale comput-

ing project, which is supported by the National Science Founda-

tion (award number OCI 07-25070) and the state of Illinois.

7. REFERENCES
[1] R. Alverson, D. Roweth, and L. Kaplan. The Gemini

system interconnect. In Proceedings of the IEEE
Symposium on High Performance Interconnects
(HOTI’10), pages 83–87. IEEE Computer Society,
2010.

[2] B. Arimilli, R. Arimilli, V. Chung, S. Clark,
W. Denzel, B. Drerup, T. Hoefler, J. Joyner, J. Lewis,
J. Li, N. Ni, and R. Rajamony. The PERCS
high-performance interconnect. In Proceedings of the
IEEE Symposium on High Performance Interconnects
(HOTI’10), pages 75–82. IEEE Computer Society,
2010.

[3] R. Barriuso and A. Knies. SHMEM user’s guide for C,
1994.

[4] G. Bauer, S. Gottlieb, and T. Hoefler. Performance
modeling and comparative analysis of the MILC
lattice QCD application su3 rmd. In Proceedings of the
IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGRID’12), pages
652–659. IEEE Computer Society, 2012.

[5] M. Beck and M. Kagan. Performance evaluation of the
RDMA over ethernet (RoCE) standard in enterprise
data centers infrastructure. In Proceedings of the
Workshop on Data Center - Converged and Virtual
Ethernet Switching (DC-CaVES’11), pages 9–15.
ITCP, 2011.

[6] C. Bell, D. Bonachea, Y. Cote, J. Duell, P. Hargrove,
P. Husbands, C. Iancu, M. Welcome, and K. Yelick.
An evaluation of current high-performance networks.
In Proceedings of the IEEE International Parallel and
Distributed Processing Symposium (IPDPS’03). IEEE
Computer Society, 2003.

[7] C. Bell, D. Bonachea, R. Nishtala, and K. Yelick.
Optimizing bandwidth limited problems using
one-sided communication and overlap. In Proceedings

of the International Conference on Parallel and
Distributed Processing (IPDPS’06), pages 1–10. IEEE
Computer Society, 2006.

[8] C. Bernard, M. C. Ogilvie, T. A. DeGrand, C. E.
DeTar, S. A. Gottlieb, A. Krasnitz, R. Sugar, and
D. Toussaint. Studying quarks and gluons on MIMD
parallel computers. International Journal of High
Performance Computing Applications, 5(4):61–70,
1991.

[9] G. Faanes, A. Bataineh, D. Roweth, T. Court,
E. Froese, B. Alverson, T. Johnson, J. Kopnick,
M. Higgins, and J. Reinhard. Cray Cascade: A
scalable HPC system based on a Dragonfly network.
In Proceedings of the International Conference for
High Performance Computing, Networking, Storage
and Analysis (SC’12), pages 103:1–103:9. IEEE
Computer Society, 2012.

[10] B. B. Fraguela, Y. Voronenko, and M. Pueschel.
Automatic tuning of discrete Fourier Transforms
driven by analytical modeling. In Proceedings of the
International Conference on Parallel Architecture and
Compilation Techniques (PACT’09), pages 271–280.
IEEE Computer Society, 2009.

[11] A. Y. Grama, A. Gupta, and V. Kumar. Isoefficiency:
measuring the scalability of parallel algorithms and
architectures. Parallel and Distributed Technology:
Systems and Technology, 1(3):12–21, 1993.

[12] T. Hoefler, J. Dinan, D. Buntinas, P. Balaji,
B. Barrett, R. Brightwell, W. Gropp, V. Kale, and
R. Thakur. Leveraging MPI’s one-sided
communication interface for shared-memory
programming. In Recent Advances in the Message
Passing Interface (EuroMPI’12), volume LNCS 7490,
pages 132–141. Springer, 2012.

[13] T. Hoefler and S. Gottlieb. Parallel zero-copy
algorithms for Fast Fourier Transform and conjugate
gradient using MPI datatypes. In Recent Advances in
the Message Passing Interface (EuroMPI’10), volume
LNCS 6305, pages 132–141. Springer, 2010.

[14] T. Hoefler, T. Schneider, and A. Lumsdaine.
Characterizing the influence of system noise on
large-scale applications by simulation. In Proceedings
of the International Conference for High Performance
Computing, Networking, Storage and Analysis
(SC’10), pages 1–11. IEEE Computer Society, 2010.

[15] T. Hoefler, C. Siebert, and A. Lumsdaine. Scalable
communication protocols for dynamic sparse data
exchange. In Proceedings of the ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming (PPoPP’10), pages 159–168. ACM,
2010.

[16] ISO Fortran Committee. Fortran 2008 Standard
(ISO/IEC 1539-1:2010). 2010.

[17] W. Jiang, J. Liu, H.-W. Jin, D. K. Panda, W. Gropp,
and R. Thakur. High performance MPI-2 one-sided
communication over InfiniBand. In Proceedings of the
IEEE International Symposium on Cluster Computing
and the Grid (CCGRID’04), pages 531–538. IEEE
Computer Society, 2004.

[18] S. Karlsson and M. Brorsson. A comparative
characterization of communication patterns in
applications using MPI and shared memory on an

IBM SP2. In Proceedings of the International
Workshop on Network-Based Parallel Computing:
Communication, Architecture, and Applications
(CANPC’98), pages 189–201. Springer, 1998.

[19] R. M. Karp, A. Sahay, E. E. Santos, and K. E.
Schauser. Optimal broadcast and summation in the
LogP model. In Proceedings of the ACM Symposium
on Parallel Algorithms and Architectures (SPAA’93),
pages 142–153. ACM, 1993.

[20] S. Kumar, A. Mamidala, D. A. Faraj, B. Smith,
M. Blocksome, B. Cernohous, D. Miller, J. Parker,
J. Ratterman, P. Heidelberger, D. Chen, and B. D.
Steinmacher-Burrow. PAMI: A parallel active message
interface for the Blue Gene/Q supercomputer. In
Proceedings of the IEEE International Parallel and
Distributed Processing Symposium (IPDPS’12), pages
763–773. IEEE Computer Society, 2012.

[21] J. Larsson Traff, W. D. Gropp, and R. Thakur.
Self-consistent MPI performance guidelines. IEEE
Transactions on Parallel and Distributed Systems,
21(5):698–709, 2010.

[22] J. Mellor-Crummey, L. Adhianto, W. N. Scherer III,
and G. Jin. A new vision for Coarray Fortran. In
Proceedings of the Conference on Partitioned Global
Address Space Programming Models (PGAS’09), pages
5:1–5:9. ACM, 2009.

[23] J. M. Mellor-Crummey and M. L. Scott. Scalable
reader-writer synchronization for shared-memory
multiprocessors. SIGPLAN Notices, 26(7):106–113,
1991.

[24] J. M. Mellor-Crummey and M. L. Scott.
Synchronization without contention. SIGPLAN
Notices, 26(4):269–278, 1991.

[25] A. A. Mirin and W. B. Sawyer. A scalable
implementation of a finite-volume dynamical core in
the community atmosphere model. International
Journal of High Performance Computing Applications,
19(3):203–212, 2005.

[26] MPI Forum. MPI: A Message-Passing Interface
standard. Version 2.2, 2009.

[27] MPI Forum. MPI: A Message-Passing Interface
standard. Version 3.0, 2012.

[28] R. Nishtala, P. H. Hargrove, D. O. Bonachea, and
K. A. Yelick. Scaling communication-intensive
applications on BlueGene/P using one-sided
communication and overlap. In Proceedings of the
IEEE International Parallel and Distributed
Processing Symposium (IPDPS’09), pages 1–12. IEEE
Computer Society, 2009.

[29] OpenFabrics Alliance (OFA). OpenFabrics Enterprise
Distribution (OFED) www.openfabrics.org.

[30] F. Petrini, D. J. Kerbyson, and S. Pakin. The case of
the missing supercomputer performance: Achieving
optimal performance on the 8,192 processors of ASCI

Q. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage
and Analysis (SC’03). ACM, 2003.

[31] S. Potluri, P. Lai, K. Tomko, S. Sur, Y. Cui,
M. Tatineni, K. W. Schulz, W. L. Barth,
A. Majumdar, and D. K. Panda. Quantifying
performance benefits of overlap using MPI-2 in a
seismic modeling application. In Proceedings of the

ACM International Conference on Supercomputing
(ICS’10), pages 17–25. ACM, 2010.

[32] R. Ross, R. Latham, W. Gropp, E. Lusk, and
R. Thakur. Processing MPI datatypes outside MPI. In
Recent Advances in Parallel Virtual Machine and
Message Passing Interface (EuroPVM/MPI’09),
volume LNCS 5759, pages 42–53. Springer, 2009.

[33] G. Santhanaraman, P. Balaji, K. Gopalakrishnan,
R. Thakur, W. Gropp, and D. K. Panda. Natively
supporting true one-sided communication in MPI on
multi-core systems with InfiniBand. In Proceedings of
the IEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGRID ’09), pages
380–387. IEEE Computer Society, 2009.

[34] H. Shan, B. Austin, N. Wright, E. Strohmaier,
J. Shalf, and K. Yelick. Accelerating applications at
scale using one-sided communication. In Proceedings
of the Conference on Partitioned Global Address Space
Programming Models (PGAS’12), 2012.

[35] The InfiniBand Trade Association. Infiniband
Architecture Specification Volume 1, Release 1.2.
InfiniBand Trade Association, 2004.

[36] UPC Consortium. UPC language specifications, v1.2,
2005. LBNL-59208.

[37] J. Willcock, T. Hoefler, N. Edmonds, and
A. Lumsdaine. Active Pebbles: Parallel programming
for data-driven applications. In Proceedings of the
ACM International Conference on Supercomputing
(ICS’11), pages 235–245. ACM, 2011.

[38] M. Woodacre, D. Robb, D. Roe, and K. Feind. The
SGI Altix TM 3000 global shared-memory
architecture, 2003.

[39] T. S. Woodall, G. M. Shipman, G. Bosilca, and A. B.
Maccabe. High performance RDMA protocols in HPC.
In Recent Advances in Parallel Virtual Machine and
Message Passing Interface (EuroPVM/MPI’06),
volume LNCS 4192, pages 76–85. Springer, 2006.

[40] J. Zhang, B. Behzad, and M. Snir. Optimizing the
Barnes-Hut algorithm in UPC. In Proceedings of the
International Conference for High Performance
Computing, Networking, Storage and Analysis
(SC’11), pages 75:1–75:11. ACM, 2011.

[41] X. Zhao, G. Santhanaraman, and W. Gropp. Adaptive
strategy for one-sided communication in MPICH2. In
Recent Advances in the Message Passing Interface
(EuroMPI’12), pages 16–26. Springer, 2012.

